

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 4
PEAK POWER

Originalanleitung Dokument 20379969 DE 02

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

https://www.keb-automation.com/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. https://www.keb-automation.com/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	9
	Tabellenverzeichnis	10
	Glossar	11
	Normen für Antriebsstromrichter	13
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	13
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	14
_		4 =
1	Grundlegende Sicherheitshinweise	
	1.1 Zielgruppe	
	1.2 Transport, Lagerung und sachgemäße Handhabung	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	17
	1.4.1 EMV-gerechte Installation	18
	1.4.2 Spannungsprüfung	18
	1.4.3 Isolationsmessung.	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	
	1.8 Entsorgung	22
2	Produktbeschreibung	. 23
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	
	2.5 Typenschild	27
	2.5.1 Konfigurierbare Optionen	28
3	Technische Daten	. 29
_	3.1 Betriebsbedingungen	
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	
	5.1.2 Mediansone oniwerbeungungen	30

INHALTSVERZEICHNIS

3.1.3 Chemisch/Mechanisch aktive Stoffe	30
3.1.4 Elektrische Betriebsbedingungen	31
3.1.4.1 Geräteeinstufung	31
3.1.4.2 Elektromagnetische Verträglichkeit	31
3.2 Gerätedaten der 230V Peak Power-Geräte	32
3.2.1 Übersicht der 230V Peak Power-Geräte	32
3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte	33
3.2.3 Ein- und Ausgangsströme/ Überlast für 230V Peak Power-Geräte	34
3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V	34
3.2.3.1 Überlastcharakteristik (OL) für 230V Peak Power-Geräte	35
3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V Peak Power-Geräte	37
3.2.4 Verlustleistung bei Bemessungsbetrieb der 230V Peak Power-Geräte	40
3.2.5 Absicherung für 230V Peak Power-Geräte	40
3.3 Gerätedaten der 400V Peak Power-Geräte	41
3.3.1 Übersicht der 400V Peak Power-Geräte	41
3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte	42
3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	43
3.3.3 Ein- und Ausgangsströme/ Überlast für 400V Peak Power-Geräte	43
3.3.3.1 Überlastcharakteristik (OL) für 400V Peak Power-Geräte	44
3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) für 400V Peak Power-Geräte	46
3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte	49
3.3.5 Verlustleistung bei Bemessungsbetrieb der 400V Peak Power-Geräte	50
3.3.6 Absicherung für 400 V Peak Power-Geräte	50
3.3.6.1 Absicherung bei AC-Versorgung	50
3.3.6.2 Absicherung bei DC-Versorgung	51
3.3.6.3 Motorschutzschalter / Leistungsschalter	52
3.4 Allgemeine elektrische Daten	53
3.4.1 Schaltfrequenz und Temperatur	53
3.4.1.1 Schaltfrequenz und Temperatur der 230V Peak Power-Geräte	53
3.4.1.2 Schaltfrequenz und Temperatur der 400V Peak Power-Geräte	53
3.4.2 DC-Zwischenkreis / Bremstransistorfunktion	54
3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230V Peak Power-Geräte	55
3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400V Peak Power-Geräte	56
3.4.3 Lüfter	56
3.4.3.1 Schaltverhalten der Lüfter	57
3.4.3.2 Schaltpunkte der Lüfter	57
Einbau	58
4.1 Abmessungen und Gewichte	58
4.1.1 Einbauversion Luftkühler	58
4.1.2 Durchsteckversion Luftkühler IP20, IP54-ready	59

	4.2 Schaltschrankeinbau	60
	4.2.1 Befestigungshinweise	60
	4.2.2 Einbauabstände	61
	4.2.3 Montage von IP54-ready Geräten	62
	4.2.4 Schaltschranklüftung	63
	4.2.5 Luftströme der F6 Antriebsstromrichter	63
5	Installation und Anschluss	64
	5.1 Übersicht des COMBIVERT F6	64
	5.2 Anschluss des Leistungsteils	67
	5.2.1 Anschluss der Spannungsversorgung	67
	5.2.1.1 Klemmleiste X1A	68
	5.2.2 Schutz- und Funktionserde	69
	5.2.2.1 Schutzerdung	69
	5.2.2.2 Funktionserdung	69
	5.3 Netzanschluss	70
	5.3.1 Netzzuleitung	70
	5.3.2 AC-Netzanschluss	70
	5.3.2.1 AC-Versorgung 3-phasig	70
	5.3.2.2 Hinweis zu harten Netzen	71
	5.3.3 DC-Netzanschluss	72
	5.3.3.1 Klemmleiste X1A DC-Anschluss	72
	5.3.3.2 DC-Versorgung	73
	5.3.4 Anschluss des Motors	74
	5.3.4.1 Verdrahtung des Motors	74
	5.3.4.2 Klemmleiste X1A Motoranschluss	75
	5.3.4.3 Auswahl der Motorleitung	76
	5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung	76
	5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren	77
	5.3.4.6 Motorleitungsquerschnitt	77
	5.3.4.7 Verschaltung des Motors	77
	5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)	78
	5.3.5 Anschluss und Verwendung von Bremswiderständen	80
	5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand	81
	5.3.5.2 Verwendung eigensicherer Bremswiderstände	82
	5.3.5.3 Verwendung eines nicht eigensicheren Bremswiderstands	82
	5.3.6 DC-Verbund	83
	5.4 Zubehör	85
	5.4.1 Filter und Drosseln	85
	5.4.2 Schirmauflageblech Anbausatz	85
	5.4.3 Dichtung IP54-ready Geräte	85
	5.4.4 Nebenbaubremswiderstände	85

INHALTSVERZEICHNIS

6	Zertifizierung	
	6.1 CE-Kennzeichnung	
	6.2 UL-Zertifizierung	
	6.3 Weitere Informationen und Dokumentation	89
7	Änderungshistorie	90

Abbildungsverzeichnis

Abbildung 1:	Typenschild (exemplarisch)	27
Abbildung 2:	Konfigurierbare Optionen	28
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 260 % (OL)	36
Abbildung 4:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 16er-Gerät	38
Abbildung 5:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 240 % (OL)	44
Abbildung 6:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 270 % (OL)	45
Abbildung 7:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 19er-Gerät	47
Abbildung 8:	Blockschaltbild des Energieflusses	54
Abbildung 9:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	57
Abbildung 10:	Abmessungen Einbauversion Luftkühler	58
Abbildung 11:	Abmessungen Durchsteckversion Luftkühler IP20, IP54-ready	59
Abbildung 12:	Einbauabstände	61
Abbildung 13:	Montage von IP54-ready Geräten	62
Abbildung 14:	Schaltschranklüftung	63
Abbildung 15:	Luftströme der Lüfter	63
Abbildung 16:	F6 Gehäuse 4 Draufsicht	64
Abbildung 17:	F6 Gehäuse 4 Vorderansicht	65
Abbildung 18:	F6 Gehäuse 4 Rückansicht mit Steuerkarte KOMPAKT	66
Abbildung 19:	Eingangsbeschaltung	67
Abbildung 20:	Klemmleiste X1A	68
Abbildung 21:	Anschluss für Schutzerde	69
Abbildung 22:	Anschluss der Netzversorgung 3-phasig	70
Abbildung 23:	Klemmleiste X1A DC-Anschluss	72
Abbildung 24:	Anschluss der DC-Netzversorgung	73
Abbildung 25:	Verdrahtung des Motors	74
Abbildung 26:	Klemmleiste X1A Motoranschluss	75
Abbildung 27:	Symmetrische Motorleitung	76
Abbildung 28:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	78
Abbildung 29:	Klemmleiste X1C für Steuerkarte PRO	78
Abbildung 30:	Anschluss der Bremsenansteuerung	79
Abbildung 31:	Anschluss eines KTY-Sensors	79
Abbildung 32:	Klemmleiste X1A Anschluss Bremswiderstand	81
Abbildung 33:	Verwendung eigensicherer Bremswiderstände	82
Abbildung 34:	DC-Verbund	84

TABELLENVERZEICHNIS

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	26
Tabelle 2:	Klimatische Umweltbedingungen	29
Tabelle 3:	Mechanische Umweltbedingungen	30
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	30
Tabelle 5:	Geräteeinstufung	31
Tabelle 6:	Elektromagnetische Verträglichkeit	31
Tabelle 7:	Übersicht der 230V Peak Power-Gerätedaten	33
Tabelle 8:	Eingangsspannungen und -frequenzen der 230 V-Geräte	33
Tabelle 9:	DC-Zwischenkreisspannung für 230 V-Geräte	33
Tabelle 12:	Ein- und Ausgangsströme der 230V Peak Power-Geräte	34
Tabelle 10:	Ausgangsspannungen und -frequenzen der 230 V-Geräte	34
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 230 V	34
Tabelle 13:	Frequenzabhängiger Maximalstrom für Gerätegröße 16 Peak Power	39
Tabelle 14:	Verlustleistung der 230V Peak Power-Geräte	40
Tabelle 15:	Absicherungen für 230V Peak Power-Geräte	40
Tabelle 16:	Übersicht der 400V Peak Power-Gerätedaten	42
Tabelle 17:	Eingangsspannungen und -frequenzen der 400 V-Geräte	42
Tabelle 18:	DC-Zwischenkreisspannung für 400 V-Geräte	42
Tabelle 19:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	43
Tabelle 20:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	43
Tabelle 21:	Ein- und Ausgangsströme der 400V Peak Power-Geräte	43
Tabelle 22:	Frequenzabhängiger Maximalstrom für Gerätegröße 18 Peak Power	48
Tabelle 23:	Frequenzabhängiger Maximalstrom für Gerätegröße 19 Peak Power	49
Tabelle 24:	Übersicht der Gleichrichterdaten für 400 V-Geräte	49
Tabelle 25:	Verlustleistung der 400V Peak Power-Geräte	50
Tabelle 26:	Absicherungen für 400V Peak Power-Geräte	50
Tabelle 27:	DC-Absicherungen für 400 V / 480 V-Geräte	51
Tabelle 28:	Empfohlene Motorschutzschalter / Leistungsschalter für 400 V / 480 V-Geräte	52
Tabelle 29:	Alternative Motorschutzschalter / Leistungsschalter für 400 V / 480 V-Geräte	52
Tabelle 30:	Schaltfrequenz und Temperatur für 230V Peak Power-Geräte	53
Tabelle 31:	Schaltfrequenz und Temperatur für 400V Peak Power-Geräte	53
Tabelle 32:	DC-Zwischenkreis / Bremstransistorfunktion der 230V Peak Power-Geräte	55
Tabelle 33:	DC-Zwischenkreis / Bremstransistorfunktion der 400V Peak Power-Geräte	56
Tabelle 34:	Lüfter	56
Tabelle 35:	Schaltpunkte der Lüfter	57
Tabelle 36:	Befestigungshinweise für Einbauversion	60
Tabelle 37:	Befestigungshinweise für Durchsteckversion	60
Tabelle 38:	Filter und Drosseln für 230V-Geräte	85
Tabelle 39:	Filter und Drosseln für 400V-Geräte	85
Tabelle 40:	Schirmauflageblech Anbausatz	85
Tabelle 41·	Dichtung für IP54-ready Geräte	85

Glossar

Fa. Heidenhain

Kunden-Produkts

Der Endkunde ist der Verwender des

Endkunde

0V	Erdpotenzialfreier Massepunkt	EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.
1ph	1-phasiges Netz		Beckhoff
3ph	3-phasiges Netz	Ethernet	Echtzeit-Bussystem - definiert Proto-
AC	Wechselstrom oder -spannung		kolle, Stecker, Kabeltypen
AFE	Ab 07/2019 ersetzt AIC die bisherige	FE	Funktionserde
	Bezeichnung AFE	FSoE	Funktionale Sicherheit über Ethernet
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die	FU	Antriebsstromrichter
	bisherige Bezeichnung AFE-Filter	Gebernachbil-	Softwaregenerierter Geberausgang
AIC	Active Infeed Converter	dung	
AIC-Filter	Filter für Active Infeed Converter	GND	Bezugspotenzial, Masse
Applikation	Die Applikation ist die bestimmungs-	GTR7	Bremstransistor
	gemäße Verwendung des KEB-	Hersteller	Der Hersteller ist KEB, sofern nicht
	Produktes		anders bezeichnet (z.B. als Ma-
ASCL	Geberlose Regelung von Asynchron-		schinen-, Motoren-, Fahrzeug- oder
	motoren		Klebstoffhersteller)
Auto motor	Automatische Motoridentifikation;	HF-Filter	KEB spezifischer Ausdruck für einen
ident.	Einmessen von Widerstand und		EMV-Filter (Beschreibung siehe
	Induktivität		EMV-Filter.)
AWG	Amerikanische Kodierung für Lei-	Hiperface	Bidirektionale Geberschnittstelle der
	tungsquerschnitte		Fa. Sick-Stegmann
B2B	Business-to-business	HMI	Visuelle Benutzerschnittstelle
BiSS	Open-Source-Echtzeitschnittstelle		(Touchscreen)
	für Sensoren und Aktoren (DIN	HSP5	Schnelles, serielles Protokoll
	5008)	HTL	Inkrementelles Signal mit einer Aus-
CAN	Feldbussystem		gangsspannung (bis 30V) -> TTL
CDM	Vollständiges Antriebsmodul inkl.	IEC	IEC xxxxx steht für eine Internatio-
	Hilfsausrüstung (Schaltschrank)		nale Norm der International Electro-
COMBIVERT	KEB Antriebsstromrichter		technical Commission
COMBIVIS	KEB Inbetriebnahme- und Paramet-	IPxx	Schutzart (xx für Klasse)
	riersoftware	KEB-Produkt	Das KEB-Produkt ist das Produkt
DC	Gleichstrom oder -spannung		welches Gegenstand dieser Anlei-
DI	Demineralisiertes Wasser, auch als		tung ist
	deionisiertes (DI) Wasser bezeichnet	KTY	Silizium Temperatursensor (gepolt)
DIN	Deutsches Institut für Normung	Kunde	Der Kunde hat ein KEB-Produkt von
DS 402	CiA DS 402 - CAN-Geräteprofil für		KEB erworben und integriert das
	Antriebe		KEB-Produkt in sein Produkt (Kun-
ED	Einschaltdauer		den-Produkt) oder veräußert das
ELV	Schutzkleinspannung		KEB-Produkt weiter (Händler)
EMS	Energy Management System	MCM	Amerikanische Maßeinheit für große
EMV-Filter	EMV-Filter werden zur Unterdrü-		Leitungsquerschnitte
	ckung von leitungsgebundenen	Modulation	Bedeutet in der Antriebstechnik,
	Störungen in beiden Richtungen		dass die Leistungshalbleiter ange-
	zwischen Antriebsstromrichter und		steuert werden
	Netz eingesetzt.	MTTF	Mittlere Lebensdauer bis zum Ausfall
EN	Europäische Norm		
EnDat	Bidirektionale Geberschnittstelle der		
	Fa Haidamhain		

GLOSSAR

NHN Normalhöhennull; bezogen auf STO Sicherheitsfunktion "sicher abgedie festgelegte Höhendefinition schaltetes Drehmoment" gemäß IEC in Deutschland (DHHN2016). Die 61800-5-2 internationalen Angaben weichen TTL Logik mit 5V Betriebsspannung i.d.R. nur wenige cm bis dm hiervon Universell serieller Bus USB ab, sodass der angegebene Wert VARAN Echtzeit-Ethernet-Bussystem auf die regional geltende Definition übernommen werden kann. Not-Aus Abschalten der Spannungsversorgung im Notfall Not-Halt Stillsetzen eines Antriebs im Notfall (nicht spannungslos) Überstrom (Overcurrent) OC ОН Überhitzung OLÜberlast OSSD Ausgangsschaltelement; Ausgangssignal, dass in regelmäßigen Abstände auf seine Abschaltbarkeit hin geprüft wird. (Sicherheitstechnik) **PDS** Leistungsantriebssystem inkl. Motor und Meßfühler PΕ Schutzerde **PELV** Sichere Schutzkleinspannung, geerdet **PFD** Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit **PFH** Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit pro Stunde Pt100 Temperatursensor mit R0=100Ω Pt1000 Temperatursensor mit R0=1000 Ω PTC Kaltleiter zur Temperaturerfassung **PWM** Pulsweitenmodulation (auch Pulsbreitenmodulation PBM) RJ45 Modulare Steckverbindung mit 8 Leitungen SCL Geberlose Regelung von Synchron-Sichere Schutzkleinspannung, unge-**SELV** erdet SIL Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -1...7) SPS Speicherprogrammierbare Steue-SS₁ Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2 SSI Synchron-serielle Schnittstelle für Geber

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN 61800-2	Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
EN 61800-3	Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD)
UL61800-5-1	Amerikanische Version der IEC 61800-5-1 mit "National Deviations" für USA und Canada
EN 61800-9-2	Drehzahlveränderbare elektrische Antriebe - Teil 9-2: Ökodesign für Antriebssysteme, Motorstarter, Leistungselektronik und deren angetriebene Einrichtungen - Indikatoren für die Energieeffizienz von Antriebssystemen und Motorstartern

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC 55011/CISPR 11)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3 1994)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems (IEC 61000-2-1)
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)

NORMEN FÜR ANTRIEBSSTROMRICHTER

EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)
EN61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messverfahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339 Environmental test specification for electrical, electronic and programma equipment and systems	
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VDE 0100	Errichten von Niederspannungsanlagen – Beachtung aller Teile (IEC 60364-x-x)
VGB S 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ► Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über VDE 0100.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- · in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ► Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ► Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- Schaltschrank im Betrieb geschlossen halten.
- ► Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder VDE 0100 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig, USA UL: 480 / 277 V. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß *EN 61800-5-1*) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ▶ Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

A VORSICHT

Hoher Schalldruckpegel während des Betriebs!

Hörschäden möglich!

Gehörschutz tragen!

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

► Netzdrossel mit *U_k* = 4% einsetzen.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-format-capacitors-00009_de.pdf

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

A GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE:	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA:	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"
Slowakei			
KEB Automation KG	ASEKOL:	RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter mit Funktionaler Sicherheit, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind.

Es stehen diverse Sicherheitsfunktionen für verschiedene Anwendungen zur Verfügung. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Maschinenrichtlinie. Die möglichen Funktionen sind über eine Bauartprüfung zertifiziert.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Es sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen in der Industrie bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- · Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- Motor kann auch im Stillstand unter Spannung stehen
- · Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6
Leistungsbereich: 22...30 kW / 400 V

15 kW / 230 V

Gehäuse: 4 Peak Power

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt: EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- Großer Betriebstemperaturbereich
- Geringe Schaltverluste durch IGBT-Leistungsteil
- · Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- · Temperaturgesteuerte Lüfter, leicht austauschbar
- · Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch l²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2

2.4 Typenschlüssel

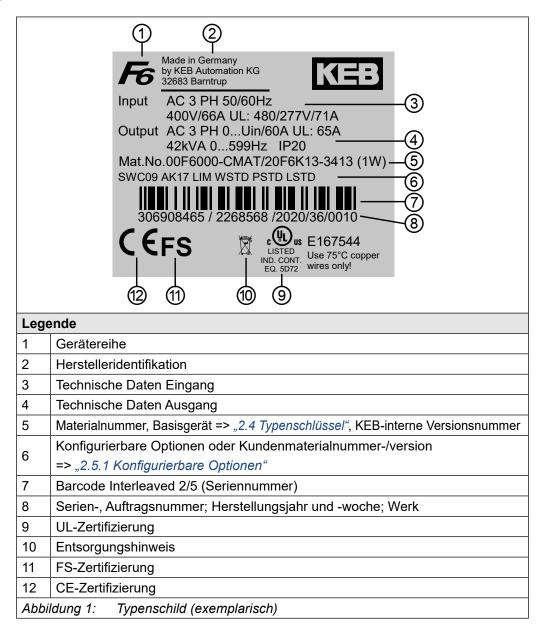
xxF6xxx-xxxx	
Kühlkörperausführung	1: Luftkühler, Einbauversion 2: Fluidkühler (Wasser), Einbauversion 3: Luftkühler, Durchsteckversion IP54-ready 4: Fluidkühler (Wasser), Durchsteckversion IP54-ready 5: Luftkühler, Durchsteckversion IP20 6: Fluidkühler (Wasser), Durchsteckversion IP54-ready, Unterbaubremswiderstände 7: Fluidkühler (ÖI), Durchsteckversion IP54-ready 8: Fluidkühler (ÖI), Durchsteckversion IP54-ready, Unterbaubremswiderstände 9: Fluidkühler (Wasser), Einbauversion, Unterbaubremswiderstände A: Fluidkühler (Wasser), Einbauversion, High-Performance, Unterbaubremswiderstände B: Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance, Unterbaubremswiderstände C: Luftkühler, Einbauversion, Version 2 D: Luftkühler, Einbauversion, High-Performance E: Fluidkühler (Wasser), Einbauversion, High-Performance F: Luftkühler, Durchsteckversion IP54-ready, High-Performance F: Luftkühler (Wasser), Durchsteckversion IP54-ready, High-Performance F: Luftkühler, Konvektion, Durchsteckversion IP54-ready, High-Performance H: Luftkühler, Konvektion, Durchsteckversion IP54-ready
Steuerkartenvariante	APPLIKATION 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3) B: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3), Alternative Klemme KOMPAKT 1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 1) 2: Multi Encoder Interface, CAN® 2), STO, VARAN PRO 0: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3) 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3) 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), RS485-potentialfrei 4: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais 5: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais B: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Alternative Klemme Weiter auf nächster Seite

xxF6x	x x - x x x	x			
		0: 2kHz/125%/150%	8: 2kHz/180%/216%		
		1: 4kHz/125%/150%	9: 4kHz/180%/216%		
		2: 8kHz/125%/150%	A: 8kHz/180%/216%		
		Schaltfrequenz,	3: 16kHz/125%/150%	B: 8kHz/HSD	
		Softwarestromgrenze,	4: 2kHz/150%/180%	C: 6kHz / HSD	
		Abschaltstrom	5: 4kHz/150%/180%	D: Sonderschaltfrequenz / Überlast	
			6: 8kHz/150%/180%	E: Sondergerät	
			7: 16kHz/150%/180%		
			1: 3ph 230 V AC/DC mit Bren	nstransistor	
			2: 3ph 230 V AC/DC ohne Br		
			3: 3ph 400 V AC/DC mit Bren		
		4: 3ph 400 V AC/DC ohne Br	emstransistor		
	Spannung/	A: 3ph 400 V AC/DC inkl. GTR7 / max. Gleichrichter /			
		Anschlussart	may Vorladung		
			B: Max. Volladung B: Max. Volladung		
			C: 3ph 400 V AC/DC GTR7-Variante 2		
			D: 3ph 400 V AC/DC GTR7-V ter / max. Vorladung	ariante 2 / max. Gleichrich-	
		Gehäuse	29		
			1: Sicherheitsmodul Typ 1/S	TO bei Steuerungstyp K	
		Ausstattung	3: Sicherheitsmodul Typ 3		
		3	4: Sicherheitsmodul Typ 4		
			5: Sicherheitsmodul Typ 5		
			A: APPLIKATION		
	Steuerungstyp		K: KOMPAKT		
			P: PRO		
		Baureihe	COMBIVERT F6		
		Gerätegröße	1033		
Tabelle 1:	Typenschlüss				

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH. Deutschland

CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.



Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

CANOPOR

2.5 Typenschild

PRODUKTBESCHREIBUNG

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
Zubehör	Axxx 1)	Gewähltes Zubehör		
Zubenor	NAK	Kein Zubehör		
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz		
freischaltung	ULO	> 599 Hz freigeschaltet		
Carriabalaiatusas	WSTD	Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Doromotriorung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundespezifisch		
Typopopiidlogo	LSTD	Logo - Standard		
Typenschildlogo	Lxxx 1)	Logo - Kundespezifisch		
Abbildung 2: Konfigurierbare Optionen				

[&]quot;,x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte)	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte)	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)
Kühlmitteleintritts- temperatur	Luft	_	_	540°C (erweitert auf -1045°C)
Relative Luftfeuchte	•	EN 60721-3-3	3K3	585% (ohne Kondensation)
Bau- und Schutzart		EN 60529	IP20	Schutz gegen Fremdkörper > ø12,5 mm Kein Schutz gegen Wasser Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist. Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)
von 1% pro 100 m zu berücksi Aufstellhöhe - Ab 2000 m hat die Steuerkart nur noch Basisisolation. Es si che Maßnahmen bei der Verd Steuerung vorzunehmen.		 Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen. Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzliche Maßnahmen bei der Verdrahtung der 		
Tabelle 2: Klimatische Umweltbedingungen				

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cobwingungagran	EN 60721-3-1	1M2	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 00721-3-1	I IVIZ	Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz)) 1)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz)
Sobwingungagranzworta	EN 00721-3-3	31014	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte	EN 61800-5-1		Schwingungsamplitude 0,075 mm (1057 Hz)
	EN 61600-5-1	_	Beschleunigungsamplitude 10 m/s² (57150 Hz)
Schockgrenzwerte	EN 60721-3-3	3M4	100 m/s²; 11 ms
Tabelle 3: Mechanische Umweltbedingungen			

¹⁾ Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	_
Kontamination	Feststoffe	EN 00721-3-1	1S2	-
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60704 2 0	2C2	-
Kontamination	Feststoffe	EN 60721-3-2	2S2	-
Betrieb		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-3	3C2	-
Kontamination	Feststoffe	EN 00721-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überspannungskategorie	EN 61800-5-1	III	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen		
Leitungsgeführte Störaussen- dung	EN 61800-3	C2 / C3	Der angegebene Wert wird nur in Verbindung mit einem Filter eingehalten. Angaben der Entstörung (Bemessungsschaltfrequenz, max. Motorleitungslänge) ist der entsprechenden Filteranleitung zu entnehmen.		
Abgestrahlte Störaussendung	EN 61800-3	C2	_		
Störfestigkeit	Norm	Pegel	Bemerkungen		
Statische Entladungen	EN 61000-4-2	8kV 4kV	AD (Luftentladung) CD (Kontaktentladung)		
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_		
Burst - AC - Leistungsschnitt- stellen	EN 61000-4-4	4 kV	-		
Suggest to the second selection of the second selectio	EN 64000 4 5	1kV	Phase-Phase		
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde		
Leitungsgeführte Störfestig- keit, induziert durch hochfre- quente Felder	EN 61000-4-6	10 V	0,1580 MHz		
		10 V/m	80 MHz1 GHz		
Elektromagnetische Felder	EN 61000-4-3	3V/m	1,42 GHz		
		1 V/m	22,7 GHz		
Spannungsschwankungen/	EN 61000-2-1		-15%+10%		
-einbrüche	EN 61000-4-34		Klasse 3		
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %		
Spannungsabweichungen	EN 61000-2-4	_	±10%		
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %		
Tabelle 6: Elektromagnetische Verträglichkeit					

3.2 Gerätedaten der 230V Peak Power-Geräte

3.2.1 Übersicht der 230V Peak Power-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			16
Gehäuse			4
Ausgangsbemessungsscheinleistung		Sout / kVA	24
Max. Motorbemessungsleistung	1)	Pmot / kW	15
Eingangsbemessungsspannung		Un / V	230 (UL: 240)
Eingangsspannungsbereich		Uin / V	170264
Netzphasen			3
Netzfrequenz		<i>f</i> ∧ / Hz	50 / 60 ±2
Eingangsbemessungsstrom @ <i>U</i> _N = 230 V		lin / A	68
Eingangsbemessungsstrom @ <i>U</i> _N = 240 V		lin_UL / A	68
Isolationswiderstand @ <i>Udc</i> = 500V		Riso / MΩ	> 20
Ableitstrom		liso_ac / mA	> 3,5
Ausgangsspannung		Uout / V	0 <i>U</i> in
Ausgangsfrequenz	2)	fout / Hz	0599
Ausgangsphasen			3
Ausgangsbemessungsstrom @ <i>U</i> _N = 230 V		In / A	62
Ausgangsbemessungsstrom @ <i>U</i> _N = 240 V		IN_UL / A	62
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	200
Softwarestromgrenze	3) 9)	Ilim / %	216
Abschaltstrom	3)	loc / %	260
Bemessungsschaltfrequenz		fsn / kHz	8
Max. Schaltfrequenz	5)	fs_max / kHz	16
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	677
Überlaststrom über Zeit	3)	IOL / %	=> "3.2.3.1 Überlastcharakteristik (OL) für 230V Peak Power-Geräte"
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	203 / 260
Maximalstrom 0Hz/50Hz bei <i>f</i> s=4kHz		lout_max / %	172 / 260
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	133 / 225
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	88 / 158
Max. Bremsstrom		I _{B_max} / A	93
Min. Bremswiderstandswert		RB_min / Ω	4,5

Gerätegröße		16
Gehäuse		4
Bremstransistor	6)	Max. Spieldauer: 120 s; Max. ED: 50 %
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung
Schutzfunktion Bremswiderstand	7)	Feedbacksignalauswertung und
(Error GTR7 always on)	.,	Stromabschaltung
Max. Motorleitungslänge geschirmt	8) // m	100
Tabelle 7: Übersicht der 230V Peak Pow	ver-Gerätedaten	

¹⁾ Bemessungsbetrieb entspricht $U_N = 230V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- 3) Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten => "3.2.3.1 Überlastcharakteristik (OL) für 230V Peak Power-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating => "3.4.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt. Werte gelten bei externen Bremswiderständen.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.
- ⁸⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.
- ⁹⁾ Im Überlastbetrieb kann eine Sättigung der Netzdrossel auftreten und kann zu einer Lebensdauerreduzierung führen.

3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte

Eingangsspannungen und -frequenzen			
Eingangsbemessungsspannung	Un / V	230	
Nominal-Netzspannung (USA)	UN_UL / V	240	
Eingangsspannungsbereich	UIN / V	170264	
Netzphasen		3	
Netzfrequenz	f∧ / Hz	50/60	
Netzfrequenztoleranz f _{Nt} / Hz ± 2			
Tabelle 8: Eingangsspannungen und -frequenzen der 230 V-Geräte			

DC-Zwischenkreisspannung				
Zwischenkreis Bemessungsspannung @ $U_N = 230 \text{V}$ U_{N_dc} / V 325				
Zwischenkreis Bemessungsspannung @ UN_UL = 240 V				
Zwischenkreis Arbeitsspannungsbereich	Udc / V	240373		
Tabelle 9: DC-Zwischenkreisspannung für 230 V-Geräte				

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

GERÄTEDATEN DER 230V PEAK POWER-GERÄTE

Ausgangsspannungen und -frequenzen				
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>Uin</i>		
Ausgangsfrequenz	2) fout / Hz	0599		
Ausgangsphasen		3		
Tabelle 10: Ausgangsspannungen und -frequenzen der 230 V-Geräte				

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V").

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel		
Netzdrossel <i>U</i> _k	4			
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und		
Antriebsstromrichter geregelt	8	Motordrossel an einem weichen Netz: 230 V-Netzspannung (100%) - 25,3V reduzierte Spannung (11%) = 204,7 V-Motorspannung		
Motordrossel Uk	1			
Weiches Netz	2	= Cpaimang (1175) 2017, 1 motoropaimang		
Tabelle 11: Beispiel zur Berechnung der möglichen Motorspannung für 230 V				

3.2.3 Ein- und Ausgangsströme/ Überlast für 230V Peak Power-Geräte

Gerätegröße			16	
Eingangsbemessungsstrom @ UN = 230 V	1)	lin / A	68	
Eingangsbemessungsstrom @ Un_uL = 240 V	1)	Iin_UL / A	68	
Ausgangsbemessungsstrom @ U _N = 230 V		In / A	62	
Ausgangsbemessungsstrom @ Un_uL = 240 V		IN_UL / A	62	
Ausgangsbemessungsüberlast (60 s)	2)	160s / %	200	
Überlaststrom	2)	IOL / %	=> "3.2.3.1 Überlastcharakteristik (OL) für 230V Peak Power-Geräte"	
Softwarestromgrenze	2) 3)		216	
Abschaltstrom	2)	loc / %	260	
Tabelle 12: Ein- und Ausgangsströme der 230V Peak Power-Geräte				

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

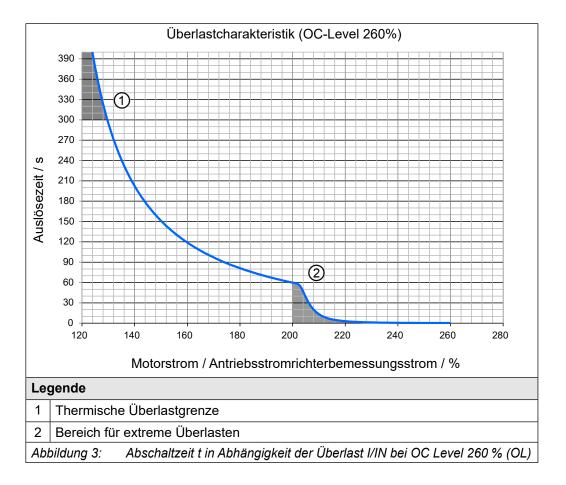
Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

3.2.3.1 Überlastcharakteristik (OL) für 230V Peak Power-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 200 % für 60 s betrieben werden.


Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC Level 260 % (OL)" wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V Peak Power-Geräte".

GERÄTEDATEN DER 230V PEAK POWER-GERÄTE

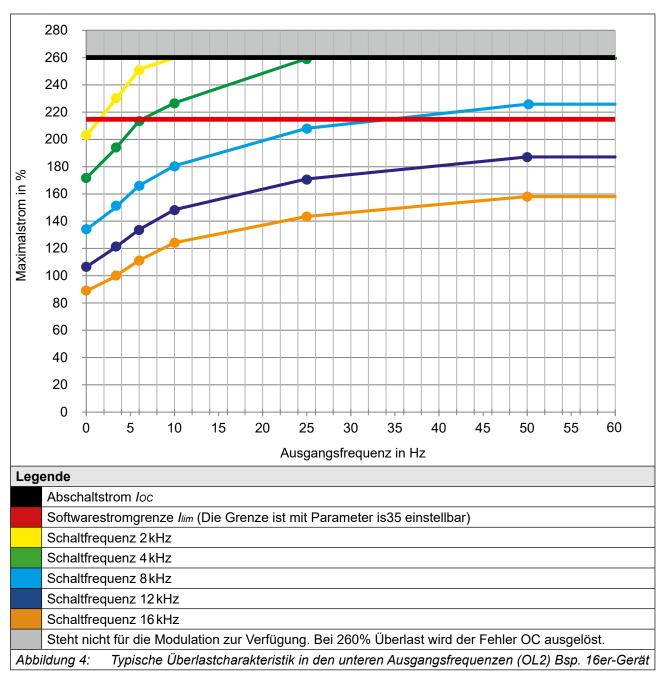
- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast in diesem Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.

3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V Peak Power-Geräte


Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

GERÄTEDATEN DER 230V PEAK POWER-GERÄTE

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 10 Hz 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 16 dargestellt.

Der frequenzabhängie Maximalstrom l_{out_max} bezieht sich prozentual auf den Ausgangsbemessungsstrom l_{N} .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße			16						
Bemessungsschaltfrequenz			8						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	203	227	251	260	260	260	
Fraguenzahhängiger Mevimeletrem @ fe		4 kHz	172	191	214	233	260	260	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / %	8kHz	133	148	166	180	208	225	
Basic Time Feriou – 62,5 µs (Farameter 1822–0)		16 kHz	88	98	111	124	143	158	
		1,75 kHz	203	227	251	260	260	260	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 \u03c4s (Parameter is 22=1)	lout_max / %	3,5 kHz	180	200	223	243	260	260	
		7kHz	143	159	178	194	222	241	
		14 kHz	97	108	122	136	157	172	
		1,5 kHz	203	227	251	260	260	260	
Eraguanzahhängigar Mayimalatram @ fa	1 . / 0/	3kHz	187	209	233	253	260	260	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max / %	6kHz	153	170	190	207	236	256	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12 kHz	106	119	133	148	171	187	
		1,25 kHz	203	227	251	260	260	260	
Fraguenzahhängiger Mevimeletrem @ f-	1 10/	2,5 kHz	195	218	242	260	260	260	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	162	181	202	220	250	260	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	120	133	150	164	189	206	
Tabelle 13: Frequenzabhängiger Maximalstron	n für Geräte	größe 16 Pe	ak Po	wer					

GERÄTEDATEN DER 230V PEAK POWER-GERÄTE

3.2.4 Verlustleistung bei Bemessungsbetrieb der 230V Peak Power-Geräte

Gerätegröße		16
Verlustleistung bei Bemessungsbetrieb	1) <i>P</i> _D / W	677
Tabelle 14: Verlustleistung der 230V Peak F		

¹⁾ Bemessungsbetrieb entspricht UN = 230 V; fsN; fN = 50 Hz (typischer Wert)

3.2.5 Absicherung für 230V Peak Power-Geräte

		Max. Größe der Sicherung / A							
Geräte- größe	<i>U</i> _N = 230 V gG (IEC)	<i>U</i> _N = 240V Class "J"		<i>U</i> _N = 240V					
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA	Тур	Rating				
16	00	100	100	SIBA 20 1xy 20.100	700Vac				
16 80	100	100	COOPER BUSSMANN 170M1367	700Vac					
Tabelle 15: Absicherungen für 230V Peak Power-Geräte									

¹⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30kA eff. geeignet.

3.3 Gerätedaten der 400V Peak Power-Geräte

3.3.1 Übersicht der 400V Peak Power-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			18	19		
Gehäuse			4	4		
Ausgangsbemessungsscheinleistung		Sout / kVA	35	42		
Max. Motorbemessungsleistung	1)	Pmot / kW	22	30		
Eingangsbemessungsspannung		Un / V	400 (U	L: 480)		
Eingangsspannungsbereich		Uin / V	280.	550		
Netzphasen			,	3		
Netzfrequenz		f∧ / Hz	50 / 6	60 ±2		
Eingangsbemessungsstrom @ U _N = 400V		lin / A	59	66		
Eingangsbemessungsstrom @ UN = 480V		lin_UL / A	48	59		
Isolationswiderstand @ <i>Udc</i> = 500V		Riso / MΩ	>	20		
Ableitstrom		liso_ac / mA	> 3,5	> 3,5		
Ausgangsspannung		Uout / V	0 <i>Uin</i>			
Ausgangsfrequenz	2)	fout / Hz	0599			
Ausgangsphasen			;	3		
Ausgangsbemessungsstrom @ UN = 400 V		In / A	50 60			
Ausgangsbemessungsstrom @ UN = 480 V		IN_UL / A	40	54		
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	160	200		
Softwarestromgrenze	3) 11)	Ilim / %	200	225		
Abschaltstrom	3)	loc / %	240	270		
Bemessungsschaltfrequenz		fsn / kHz	4 (S1 Betrieb), 8 (S3 Betrieb) 9)	4 (S1 Betrieb), 8 (S3 Betrieb) 10)		
Max. Schaltfrequenz	5)	fs_max / kHz	16	16		
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	558	698		
Überlaststrom über Zeit	3)	IOL / %	=> "3.3.3.1 Überlastcharakteristik (OL) für 400\ Peak Power-Geräte"			
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	212 / 240	205 / 270		
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	162 / 240	152 / 253		
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	106 / 188	95 / 172		
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	56 / 104	45 / 87		
			V	veiter auf nächster Seite		

GERÄTEDATEN DER 400V PEAK POWER-GERÄTE

Gerätegröße		18	19		
Gehäuse	4				
Max. Bremsstrom	I _{B_max} / A	93	93		
Min. Bremswiderstandswert	R_{B_min} / Ω	9	8		
Bremstransistor	6)	Max. Spieldauer: 120s; Max. ED: 50%			
Schutzfunktion für Bremstransistor		Kurzschlussi	überwachung		
Schutzfunktion Bremswiderstand (Error GTR7 always on)	7)	Feedbacksignalauswertung und Stromabsotung (nur bei AC-Netzanschluss)			
Max. Motorleitungslänge geschirmt	8) // m	50	50		
Tabelle 16: Übersicht der 400V Peak Power-Gerätedaten					

Bemessungsbetrieb entspricht $U_N = 400V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten => "3.3.3.1 Überlastcharakteristik (OL) für 400V Peak Power-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating => "3.4.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt. Werte gelten bei externen Bremswiderständen.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.ng.
- ⁸⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.
- 9) ED: 70%, Tp: 35s
- 10) ED: 70%, Tp: 10s

3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen					
Eingangsbemessungsspannung	Un / V	400			
Nominal-Netzspannung (USA)	U _{N_UL} / V	480 / 277			
Eingangsspannungsbereich	UIN / V	280550			
Netzphasen		3			
Netzfrequenz	f _N / Hz	50/60			
Netzfrequenztoleranz	f _{Nt} / Hz	± 2			
Tabelle 17: Eingangsspannungen und -frequenzen der 400 V-Geräte					

DC-Zwischenkreisspannung		
Zwischenkreis Bemessungsspannung @ UN = 400 V	Un_dc / V	565
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	<i>U</i> N_UL_dc / V	680
Zwischenkreis Arbeitsspannungsbereich	Udc / V	390780
Tabelle 18: DC-Zwischenkreisspannung für 400 V-Geräte		

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

¹¹⁾ Im Überlastbetrieb kann eine Sättigung der Netzdrossel auftreten und kann zu einer Lebensdauerreduzierung führen.

Ausgangsspannungen und -frequenzen				
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in		
Ausgangsfrequenz	2) fout / Hz	0599		
Ausgangsphasen		3		
Tabelle 19: Ausgangsspannungen und -frequenzen der 400 V-Geräte				

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel					
Netzdrossel <i>U</i> _k	4						
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Mo-					
Antriebsstromrichter geregelt	8	tordrossel an einem weichen Netz:					
Motordrossel <i>U</i> _k	1	400 V-Netzspannung (100%) - 44V reduzierte Span- nung (11 %) = 356 V-Motorspannung					
Weiches Netz	2	many (11 70) 200 t Motoropalmany					
Tabelle 20: Beispiel zur Berechnung der möglichen Motorspannung für 400 V							

3.3.3 Ein- und Ausgangsströme/ Überlast für 400V Peak Power-Geräte

Gerätegröße			18	19
Eingangsbemessungsstrom @ Un = 400 V	1)	Iin / A	59	66
Eingangsbemessungsstrom @ Un_uL = 480 V	1)	Iin_UL / A	48	59
Eingangsbemessungsstrom DC @ UN_dc = 565 V			73	58
Eingangsbemessungsstrom DC @ UN_UL_dc = 680 V			81	73
Ausgangsbemessungsstrom @ U _N = 400 V		In / A	50	60
Ausgangsbemessungsstrom @ UN_UL = 480 V		IN_UL / A	40	54
Ausgangsbemessungsüberlast (60 s)	2)	160s / %	160	200
Überlaststrom	2)	IOL / %	1	lastcharakteristik ak Power-Geräte"
Softwarestromgrenze	2) 3)	Ilim / %	200	225
Abschaltstrom	2)	loc / %	240	270
Tabelle 21: Ein- und Ausgangsströme der 400V Pea	k Pou	er-Geräte		

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

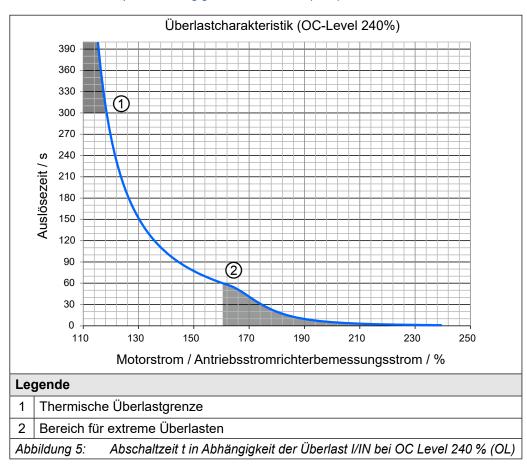
²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

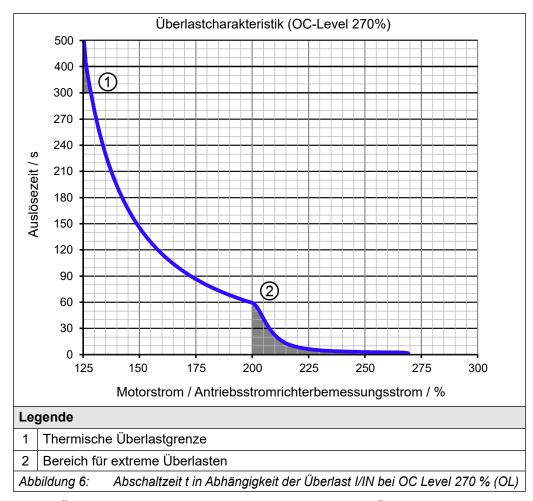
³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

GERÄTEDATEN DER 400V PEAK POWER-GERÄTE

3.3.3.1 Überlastcharakteristik (OL) für 400V Peak Power-Geräte


Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 160% bzw. 200% für 60s betrieben werden.

Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.


Für extreme Überlasten (=> "Abbildung 5: Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 240 % (OL)" oder "Abbildung 6: Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 270 % (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) für 400V Peak Power-Geräte".

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

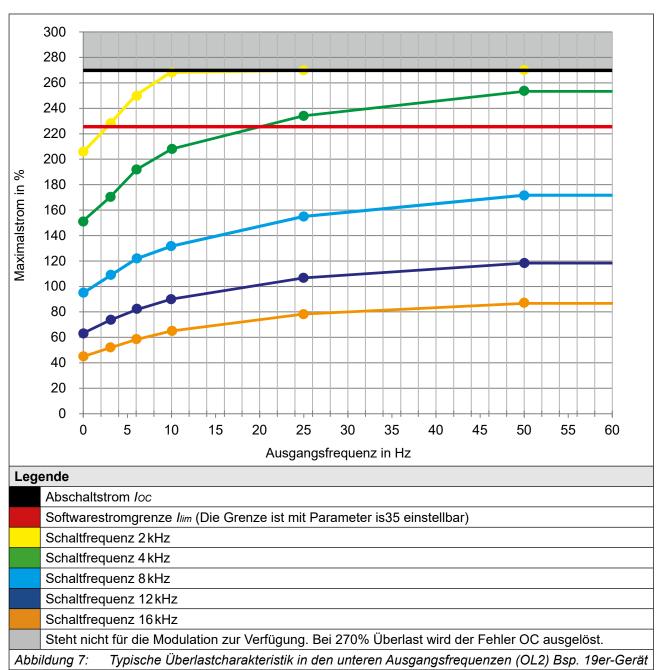
Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

GERÄTEDATEN DER 400V PEAK POWER-GERÄTE

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast in diesem Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.

3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) für 400V Peak Power-Geräte


Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 10 Hz 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 19 dargestellt.

Der frequenzabhängie Maximalstrom *lout_max* bezieht sich prozentual auf den Ausgangsbemessungsstrom *ln.*

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße			18						
Bemessungsschaltfrequenz			4 (S1 Betrieb), 8 (S3 Betrieb) 1)						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	212	234	240	240	240	240	
Eroguanahhängigar Mayimalatram @ fa	1 . / 0/	4 kHz	162	180	202	220	240	240	
Frequenzabhängiger Maximalstrom @ fs	lout_max / % -	8 kHz	106	118	134	148	172	188	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	56	64	72	78	94	104	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 \(\mu \)s (Parameter is 22=1)	lout_max / %	1,75 kHz	212	234	240	240	240	240	
		3,5 kHz	175	194	217	237	240	240	
		7 kHz	120	134	151	166	192	210	
		14 kHz	66	75	84	92	110	121	
		1,5 kHz	212	234	240	240	240	240	
Fun anna arrabh i a si ann Manian alatan ar 🌣 fi	1.0/	3 kHz	187	207	232	240	240	240	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6 kHz	134	149	168	184	212	232	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	76	86	96	106	126	138	
		1,25 kHz	212	234	240	240	240	240	
For any or the King of the Marking Later.		2,5 kHz	200	221	240	240	240	240	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	148	165	185	202	232	240	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	91	102	115	127	149	163	
Tabelle 22: Frequenzabhängiger Maximalstron	n für Geräte	egröße 18 Pe	ak Po	wer					

¹⁾ ED: 70%, Tp: 35s

Gerätegröße		19							
Bemessungsschaltfrequenz			4 (S1 Betrieb), 8 (S3 Betrieb) 1)						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	205	227	250	268	270	270	
Fraguanzahhängigar Mavimalatram @ fa	1	4 kHz	152	170	192	207	233	253	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 \mu s (Parameter is 22=0)	lout_max / %	8kHz	95	108	122	132	155	172	
Basic Time Feriou – 62,5 µs (Farameter 1822–0)		16 kHz	45	52	58	65	78	87	
		1,75 kHz	205	227	250	268	270	270	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 µs (Parameter is 22=1)	lout_max / %	3,5 kHz	165	184	206	222	250	270	
		7kHz	109	124	139	150	174	192	
		14 kHz	54	63	70	78	93	103	
		1,5 kHz	205	227	250	268	270	270	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	178	198	221	238	268	270	
Basic Time Period = 83,3 µs (Parameter is 22=2)	Iout_max I 70	6kHz	123	139	159	169	194	213	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12 kHz	63	73	82	90	107	118	
		1,25 kHz	205	227	250	268	270	270	
	1	2,5 kHz	192	213	235	253	270	270	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	138	155	174	188	214	233	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	79	91	102	111	131	145	
Tabelle 23: Frequenzabhängiger Maximalstron	n für Geräte	größe 19 Pe	ak Po	wer				,	

¹⁾ ED: 70%, Tp: 10s

3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte

Gerätegröße			18	19	
Gleichrichterbemessungsleistung		Prect / kW	25	34	
Gleichrichterdauerleistung	1)	Prect_cont / kW	61	61	
Eingangsdauerstrom @ UN = 400 V	1)	lin_cont / A	121	121	
Eingangsdauerstrom @ UN_UL = 480 V	1)	lin_UL_cont / A	106	106	
Ausgangsbemessungsstrom DC @ U_{N_dc} = 565V		lout_dc / A	73	81	
Ausgangsdauerstrom DC @ UN_dc = 565 V	1)	lout_dc_cont / A	148	148	
Ausgangsbemessungsstrom DC @ UN_UL_dc = 680V		lout_UL_dc / A	58	73	
Ausgangsdauerstrom DC @ UN_UL_dc = 680 V	1)	lout_UL_dc_cont / A	129	129	
Tabelle 24: Übersicht der Gleichrichterdaten für 400 V-Geräte					

Der Dauerbetrieb ist eine Belastung über den Bemessungsbetrieb hinaus. Der Dauerbetrieb tritt nur auf, wenn der interne Gleichrichter verwendet wird, um weitere Antriebsstromrichter über die DC-Klemmen zu versorgen => "5.3.6 DC-Verbund". Im Dauerbetrieb kann abhängig von den Betriebsbedingungen des internen Wechselrichters der OH-Fehler ausgelöst werden.

GERÄTEDATEN DER 400V PEAK POWER-GERÄTE

3.3.5 Verlustleistung bei Bemessungsbetrieb der 400V Peak Power-Geräte

Gerätegröße			18	19	
Bemessungsschaltfrequenz		fsn / kHz	4 (S1 Betrieb), 8 (S3 Betrieb) 3)	4 (S1 Betrieb), 8 (S3 Betrieb) 4-)	
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> _D / W	558	698	
Verlustleistung bei Bemessungsbetrieb DC ²⁾ P _{D_dc} / W		484	560		
Tabelle 25: Verlustleistung der 400V Peak Power-Geräte					

¹⁾ Bemessungsbetrieb entspricht UN = 400 V; fsN; IN; fN = 50 Hz (typischer Wert)

3.3.6 Absicherung für 400 V Peak Power-Geräte

3.3.6.1 Absicherung bei AC-Versorgung

		Ma	Max. Größe der Sicherung / A						
Geräte-	<i>U</i> _N = 400 V gG (IEC)	<i>U</i> _N = 480V / 277V Class "J"	<i>U</i> _{N_UL} = 480V				<i>U</i> N_UL = 480 V		
größe	SCCR 30 kA	SCCR	SCCR 30 kA						
	SCCK SUKA	5kA	SCCR SURA	Тур					
				SIBA 20 189 20.50					
18	80	60	50	EATON 170M1364					
				LITTELFUSE L70QS050					
19	90	90	90	SIBA 20 189 20.80					
19	80	80	80 EATON 170M1366						
Tabelle 2	6: Absicherun	gen für 400V Peak Po	ower-Geräte						

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30kA eff. geeignet.

²⁾ Bemessungsbetrieb DC entspricht $U_{N_dc} = 565 V$; In; fn = 50 Hz (typischer Wert)

³⁾ ED: 70%, Tp: 35s

⁴⁾ ED: 70%, Tp: 10s

3.3.6.2 Absicherung bei DC-Versorgung

Geräte-	•	e Größe der rung / A	7							
größe	$U_{N_dc} = 565V$	$U_{N_UL_dc} = 680V$	Zulässige Sicherungen ¹⁾							
	SCCR 50 kA	SCCR 50 kA								
			SIBA 50 250 06.80							
		80	SIBA 50 280 06.100							
18	100		80	80	80	SIBA 20 209 37.100 ²⁾				
			SIBA 50 268 06.125							
			SIBA 20 557 34.250 ²⁾							
			SIBA 20 031 34.250							
19	125	100	Bussmann FWP-100A22F							
	.20									Bussmann 170M1422
			Littelfuse L70QS500							
Tabelle 27	: DC-Absicherung	en für 400 V / 480 V-0	Geräte							

¹⁾ Sicherungen des gleichen Typs mit geringeren Bemessungsströmen können verwendet werden, wenn sie für die Anwendung geeignet sind.

ACHTUNG

Bemessungsspannung der Sicherung beachten!

▶ Die Bemessungsspannung der Sicherung muss mindestens der maximalen DC-Versorgungsspannung des Antriebsstromrichters entsprechen.

²⁾ Sicherung ohne UL-Zertifizierung.

GERÄTEDATEN DER 400V PEAK POWER-GERÄTE

3.3.6.3 Motorschutzschalter / Leistungsschalter

	Empfohlene Motorschutzschalter / Leistungsschalter						
Geräte-	IEC (U _N = 400V)		UL (<i>UN_UL</i> = 480V)				
größe	Тур	Bemes- sungs- strom / A	SCCR @ Un / kA	Тур	Bemes- sungs- strom / A	Bemes- sungsleis- tung / hp	SCCR @ Un_ul / kA
18	Eaton PKZM4-63	63	30	Eaton PKZM4-50	50	30	30
19	Eaton NZMN1- A80-NA	80	30	Eaton PKZM4-58	58	40	30

Tabelle 28: Empfohlene Motorschutzschalter / Leistungsschalter für 400 V / 480 V-Geräte

Alternative Motorschutzschalter / Leistungsschalter						
	IEC (<i>U</i> _N = 400)	V)				
Typ Bemessungsstrom / A Bemessungsleistung / hp SCCR @						
Eaton PKZM4-63	65	40	30			
Siemens 3RV2032-4KA10	73	60	30			
Siemens 3RV2042-4MA10	100	75	30			
Schneider GV3P65	65	40	30			
Eaton NZMN1-A125-NA	125	_	30			
Eaton NZMH2-A160-NA	160	_	30			
Siemens 3VA5112-6ED31-0AA0	125	_	30			
Siemens 3VA5215-6ED31-0AA0	150	_	30			
Schneider BJL36125 125 – 30						
Tabelle 29: Alternative Motorschu	ıtzschalter / Leistungsscha	alter für 400 V / 480 V-Geräte				

Motorschutzschalter / Leistungsschalter desselben Typs mit geringerem Bemessungsstrom können verwendet werden, sofern sie für die Anwendung geeignet sind.

Motorschutzschalter / Leistungsschalter desselben Typs mit geringerem Ausschaltvermögen können verwendet werden, sofern sie für die Anwendung geeignet sind. In diesem Fall reduziert sich das SCCR der Kombination aus Antriebsstromrichter und Schutzgerät auf das Ausschaltvermögen des Schutzgerätes.

Motorschutzschalter / Leistungsschalter desselben Typs mit abweichenden Ausstattungsmerkmalen (z.B. Anschlussklemmen, Betätigungsarten usw.) können verwendet werden, sofern sie für die Anwendung geeignet sind und die abweichenden Merkmale keinen negativen Einfluss auf die Durchlasswerte (I²t und Ip) haben.

Nur IEC:

Hier nicht aufgelistete Motorschutzschalter / Leistungsschalter können verwendet werden, sofern sie folgende Anforderungen erfüllen:

- Durchlassintegral I2t @ UN < 910kA2s
- Durchlassstrom Ip @ UN < 18kA

3.4 Allgemeine elektrische Daten

3.4.1 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (TDR), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur die Schwelle TUR wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur TEM wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.4.1.1 Schaltfrequenz und Temperatur der 230V Peak Power-Geräte

Gerätegröße			16	
Bemessungsschaltfrequenz	1)	fsn / kHz	8	
Max. Schaltfrequenz	1)	fs_max / kHz	16	
Min. Schaltfrequenz	1)	fs_min / kHz	2	
Max. Kühlkörpertemperatur		Ths / °C	90	
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	80	
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	70	
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °C	85	
Tabelle 30: Schaltfrequenz und Temperatur für 230V Peak Power-Geräte				

¹⁾ Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.4.1.2 Schaltfrequenz und Temperatur der 400V Peak Power-Geräte

Gerätegröße			18	19
Bemessungsschaltfrequenz	1)	fsn / kHz	4 (S1 Betrieb), 8 (S3 Betrieb) 2)	4 (S1 Betrieb), 8 (S3 Betrieb) 3)
Max. Schaltfrequenz	1)	fs_max / kHz	16	16
Min. Schaltfrequenz	1)	fs_min / kHz	2	2
Max. Kühlkörpertemperatur		Ths / °C	90	90
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	80	80
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	70	70
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		TEM / °C	85	85
Tabelle 31: Schaltfrequenz und Temperatur für				

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

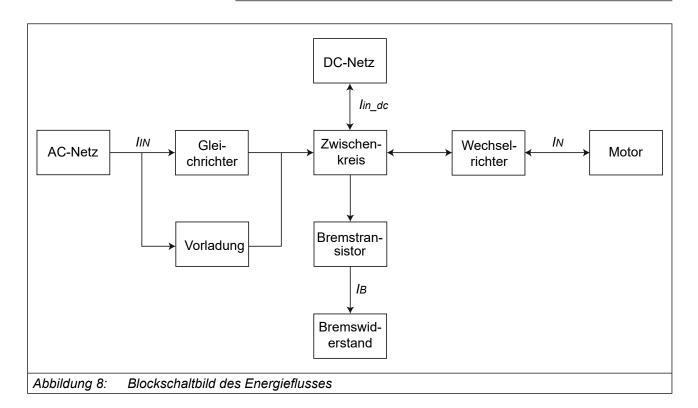
²⁾ ED: 70%, Tp: 35s

³⁾ ED: 70%, Tp: 10s

3.4.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion.

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is 30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichters!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

- ▶ Bei Auftreten des Fehlers "ERROR GTR7 always ON" ist der Antriebsstromrichter defekt und muss spätestens nach 16 Stunden spannungsfrei geschaltet werden!
- ▶ Bei DC-Netzanschluss und der Verwendung von nicht-eigensicheren Bremswiderständen oder Unterbaubremswiderständen muss der Antriebsstromrichter spätestens nach 1 Sekunde spannungsfrei geschaltet werden.

3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230V Peak Power-Geräte

Gerätegröße			16
Zwischenkreis Bemessungsspannung	emessungsspannung UN_dc / V		205
@ UN = 230V			325
Zwischenkreis Bemessungsspannung		11	220
@ U _{N_UL} = 240V		U _{N_dc_UL} / V	339
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V	240373
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	216
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	400
DC-Schaltpegel Bremstransistor	1)	U _B / V	380
Max. Bremsstrom		I _{B_max} / A	93
Bremstransistor	2)		Max. Spieldauer: 120s; Max. ED: 50%
Min. Bremswiderstandswert		RB_min / Ω	4,5
Schutzfunktion Bremswiderstand	3)		Feedbacksignalauswertung und
(Error GTR7 always on)	٥,		Stromabschaltung
Schutzfunktion für Bremstransistor			Kurzschlussüberwachung
Zwischenkreiskapazität		C/µF	6120
Tabelle 32: DC-Zwischenkreis / Bremstransisto	orfu	ınktion der 230	V Peak Power-Geräte

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt. Werte gelten bei externen Bremswiderständen.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

ALLGEMEINE ELEKTRISCHE DATEN

3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400V Peak Power-Geräte

Gerätegröße			18	19
Zwischenkreis Bemessungsspannung		11	565	EGE
@ UN = 400V		Un_dc / V	303	565
Zwischenkreis Bemessungsspannung		Un_dc_UL / V	680	680
@ Un_ul = 480V		ON_ac_UL / V	000	000
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V	390780	390780
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	240	240
DC-Abschaltpegel "Fehler! Überspannung"		UOP / V	840	840
DC-Schaltpegel Bremstransistor	1)	U _B / V	780	780
Max. Bremsstrom		I _{B_max} / A	93	105
Bremstransistor	2)		Max. Spieldauer: 12	20s; Max. ED: 50%
Min. Bremswiderstandswert		R_{B_min} / Ω	9	8
Schutzfunktion Bremswiderstand			Feedbacksignal	auswertung und
(Error GTR7 always on)	3)		Stromabschaltun	
(Error STAT always SII)			schl	uss)
Schutzfunktion für Bremstransistor			Kurzschlussi	iberwachung
Zwischenkreiskapazität		Cint / µF	1700	2380
Max. vorladbare Gesamtkapazität @ Un = 400 V		Cpc_max / µF	5700	9500
Max. vorladbare Gesamtkapazität		C	3900	6600
@ U <i>N_UL</i> = 480 V		Cpc_max_UL / µF	3900	0000
Tabelle 33: DC-Zwischenkreis / Bremstransisto	orfu	ınktion der 400V	Peak Power-Geräte	

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.4.3 Lüfter

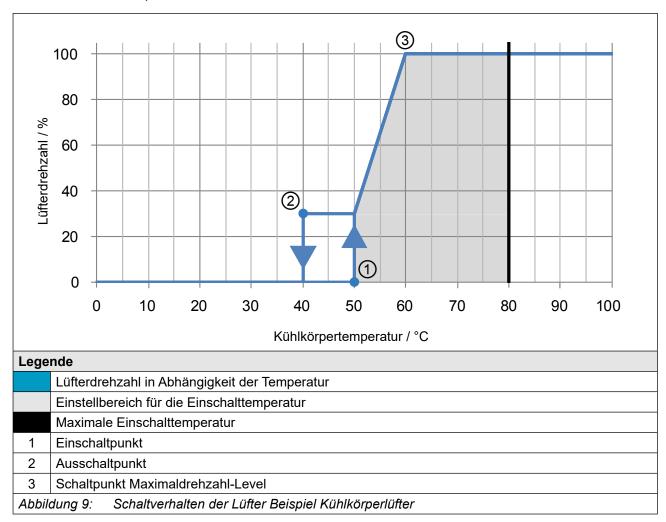
Gerätegröße		16	18	19	
Innonroumlüftor	Anzahl	1			
Innenraumlüfter	Drehzahlvariabel	Ja			
Kühlkärporlüftor	Anzahl		2		
Kühlkörperlüfter	Drehzahlvariabel	Ja			
Tabelle 34: Lüfter					

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG

Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!

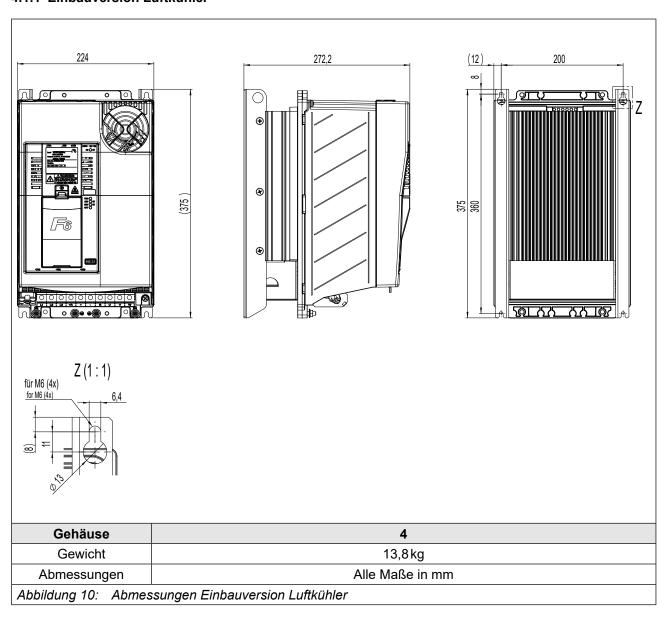

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt. Werte gelten bei externen Bremswiderständen.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.

3.4.3.1 Schaltverhalten der Lüfter

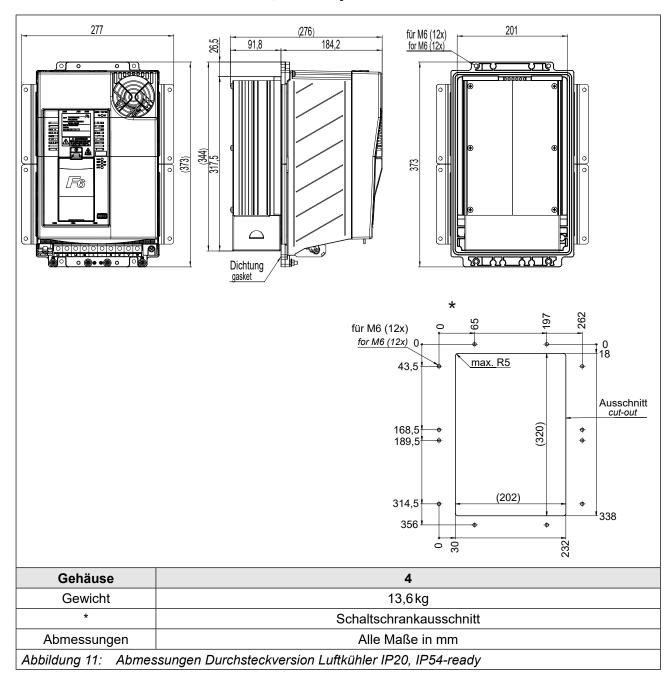
Die Temperaturüberwachung steuert die Lüfter mit verschiedenen Ein- und Ausschaltpunkten..

3.4.3.2 Schaltpunkte der Lüfter


Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.

Lüfter		Kühlkörper	Innenraum			
Einschalttemperatur	t/°C	50	45			
Maximaldrehzahl-Level	t/°C	60	55			
Tabelle 35: Schaltpunkte der Lüfter						

4 Einbau


4.1 Abmessungen und Gewichte

4.1.1 Einbauversion Luftkühler

4.1.2 Durchsteckversion Luftkühler IP20, IP54-ready

4.2 Schaltschrankeinbau

4.2.1 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment	
Sachakantashrauha ISO 1017 MG 9 9	9Nm	
Sechskantschraube <i>ISO 4017</i> - M6 - 8.8	79 lb inch	
Flache Scheibe ISO 7090 - 6 - 200 HV	_	
Tabelle 36: Befestigungshinweise für Einbauversion		

Benötigtes Material	Anzugsdrehmoment	
Cookekenteehreuhe ISO 4017 MG 0 0	9 Nm	
Sechskantschraube ISO 4017 - M6 - 8.8	79 lb inch	
Flache Scheibe ISO 7090 - 6 - 200 HV	_	
Tabelle 37: Befestigungshinweise für Durchsteckversion		

ACHTUNG

Verwendung von anderem Befestigungsmaterial

➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

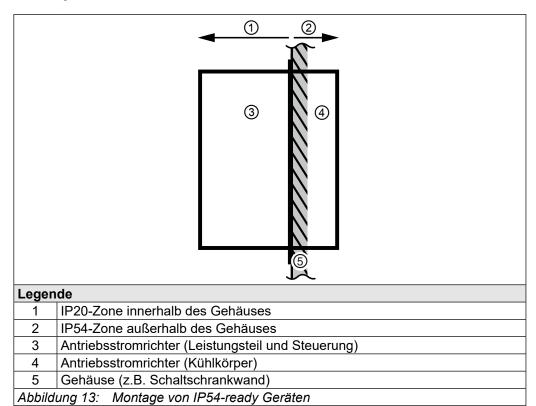
Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

4.2.2 Einbauabstände

Verlustleistung zur Schaltschrankauslegung => "3.3.5 Verlustleistung bei Bemessungsbetrieb der 400V Peak Power-Geräte". Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.

Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.


A E C B	Einbauabstände
	D D C

Maß	Abstand in mm	Abstand in inch
Α	150	6
В	100	4
С	30	1,2
D	0	0
E	0	0
F 1)	50	2

Abstand zu vorgelagerten Bedienelementen in der Schaltschranktür.

Abbildung 12: Einbauabstände

4.2.3 Montage von IP54-ready Geräten

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.4.3 Dichtung IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

Bei luftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzulässig.

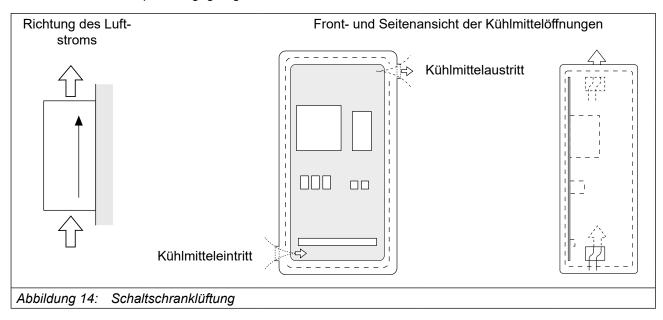
UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

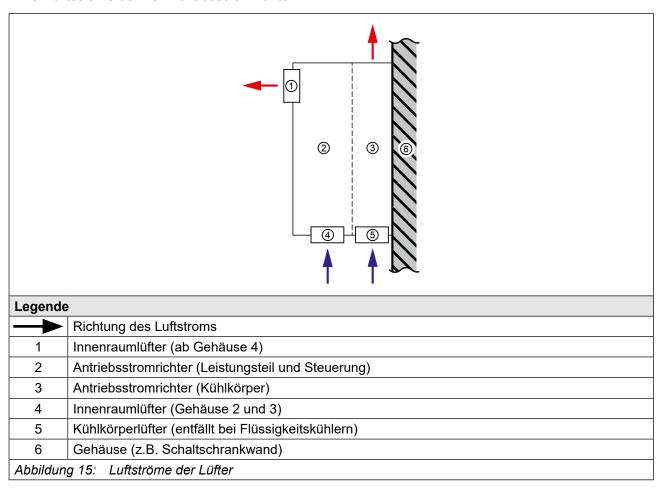
Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".

ACHTUNG

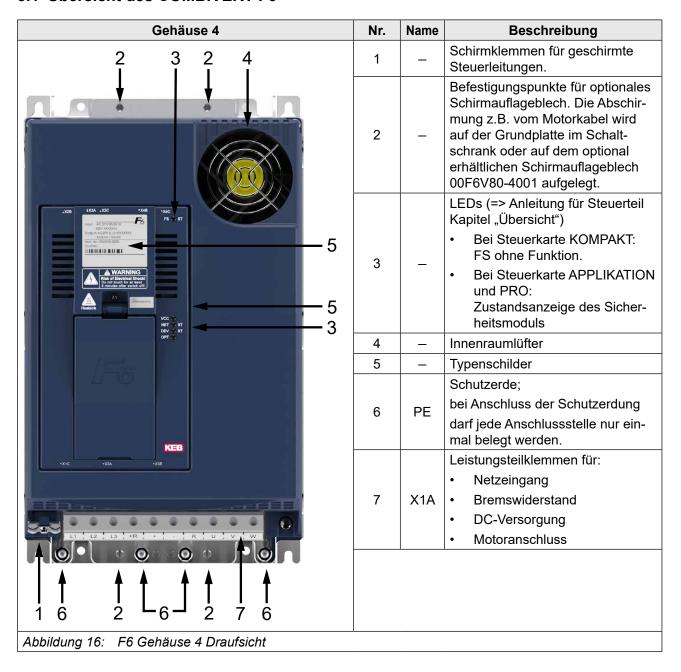

Defekt durch dauerhaftes Spritzwasser!

▶ Das Gerät niemals dauerhaftem Spritzwasser (z.B. direkte Regeneinwirkung) aussetzen!

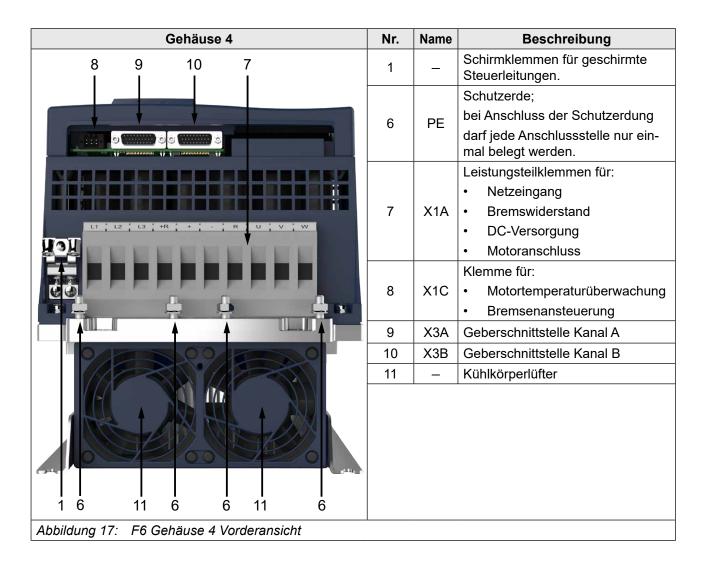


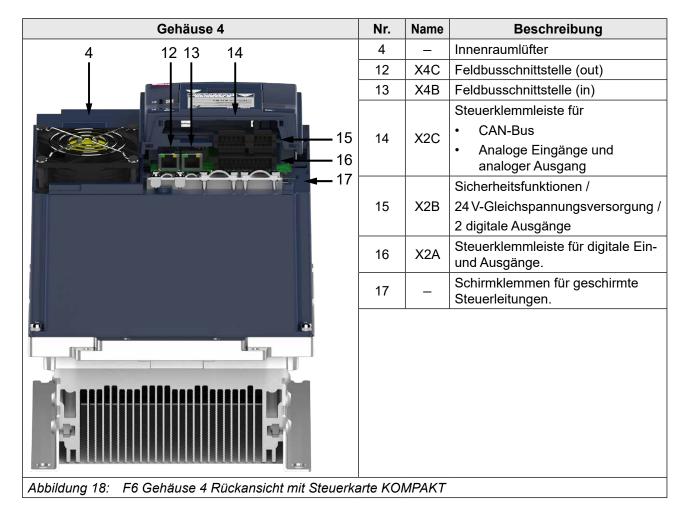
4.2.4 Schaltschranklüftung

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.



4.2.5 Luftströme der F6 Antriebsstromrichter




5 Installation und Anschluss

5.1 Übersicht des COMBIVERT F6

Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma dr f6-cu-k-inst-20144795 de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils

ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

Der COMBIVERT F6 kann über die Klemmen L1, L2 und L3 (AC-Spannungsversorgung) oder über die Klemmen + und - (DC-Spannungsversorgung mit Einschaltstrombegrenzung) versorgt werden.

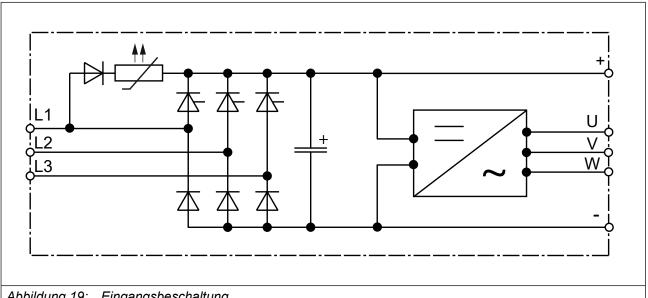


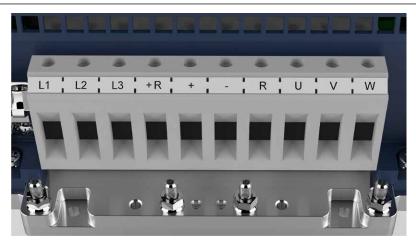
Abbildung 19: Eingangsbeschaltung

ACHTUNG

Bei AC-Spannungsversorgung minimale Wartezeit zwischen zwei Einschaltvorgängen beachten!

Zyklisches Aus- und Einschalten des Antriebsstromrichters führt zu temporärer Hochohmigkeit des PTC-Vorladewiderstandes. Nach Abkühlung des PTC-Vorladewiderstandes ist eine erneute Inbetriebnahme ohne Einschränkung möglich. Die Wartezeit zwischen zwei Einschaltvorgängen ist von der externen Kapazität, der AC-Netzspannung und der Umgebungstemperatur abhängig.

- ► Ohne externe Kapazität: 5 min
- ▶ Mit externer Kapazität (weitere Antriebsstromrichter): Bis zu 20 min.


ACHTUNG

Keine Einschaltstrombegrenzung bei DC-Spannungsversorgung!

▶ Bei DC-Spannungsversorgung muss eine externe Einschaltstrombegrenzung vorgesehen werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.1.1 Klemmleiste X1A

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
L1	Notzoposkluso			
L2	Netzanschluss			
L3	3-phasig			
+R	Anschluss für Brems- widerstand (zwischen +R und R)	Flexible Leitung mit Aderendhülse 1,535 mm² (Ohne Aderendhülse bis max. 50 mm²)		Für IEC: 2
+	DC Klemmen	Bei 2 Leitern max. 16 mm²	3,23,7 Nm 2832 lb inch	FullEC: 2
-	DC-Klemmen			Für UL: 1
R	Anschluss für Brems- widerstand (zwischen +R und R)	UL: Flexible Leitung ohne Aderendhülse AWG 161		Tul OL. 1
U				
V	Motoranschluss			
W				
Abbildung 20: Klemmleiste X1A				

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

Elektrischer Schlag durch Falschdimensionierung!

► Erdungsquerschnitt ist entsprechend *VDE 0100* zu wählen!

Name	Funktion	Anschlusstyp	Anzugsdrehmoment
PE,	Anschluss für Schutzerde	M6-Gewindestift mit Mutter für 6,5 mm Kabelschuhe	6,112 Nm 54106lb inch
Abbildung 21: Anschluss für Schutzerde			

Fehlerhafte Montage des PE-Anschlusses

Als Anschluss für die Schutzerde dürfen nur die M6-Gewindestifte mit Mutter verwendet werden!

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

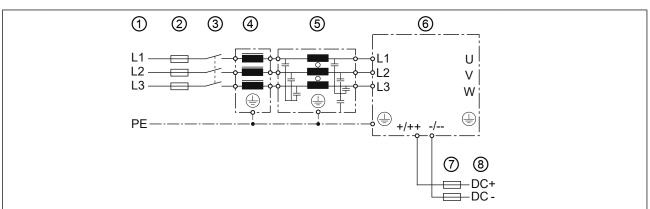
Die Funktionserde darf nicht grün/gelb verdrahtet werden!

Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

5.3 Netzanschluss

5.3.1 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:


- Eingangsstrom des Antriebsstromrichters
- Verwendeter Leitungstyp
- Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektrovorschriften

Der Projektierer ist für die Auslegung verantwortlich.

5.3.2 AC-Netzanschluss

5.3.2.1 AC-Versorgung 3-phasig

Nr.	Тур	Beschreibung		
	Netzphasen	3-phasig		
	Netzform	TN, TT	IT	
1		Die Bemessungsspannung zwischen einem Außenleiter und dem Erdpotential (bzw. dem Sternpunkt im IT - Netz) darf maximal 300 V, USA UL: 480 / 277 V betragen.		
		(Beim IT - Netz muss eine kurzfristige Abschaltung	g sichergestellt sein).	
	Personenschutz	RCMA mit Trenner oder RCD Typ B	Isolationswächter	
2	Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".		
3	Netzschütz	-		
4	Netzdrossel	Siehe Hinweise im Kapitel "Filter und Drosseln".		
5	HF-Filter für TN-, TT-Netze	Zur Einhaltung der Grenzwerte gemäß <i>EN 61800-3</i> erforderlich.		
	HF-Filter für IT-Netze			
6	Antriebsstromrichter	COMBIVERT F6		
7	DC-Sicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".		
8	DC-Versorgung	Vom Antriebsstromrichter erzeugte DC-Versorgung zum Anschluss weiterer Antriebsstromrichter => "5.3.6 DC-Verbund"		
Abbildung 22: Anschluss der Netzversorgung 3-phasig				

70

5.3.2.2 Hinweis zu harten Netzen

Bei Antriebsstromrichtern mit Spannungszwischenkreis hängt die Lebensdauer von der Höhe der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden.

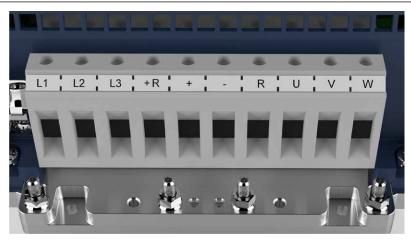
Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (S_{Net}) des Netzes im Vergleich zur Ausgangsbemessungsscheinleistung des Antriebsstromrichters (S_{out}) sehr groß ist (>>200).

$$k = \frac{S_{Net}}{S_{out}} >> 200$$

z.B.

k =
$$\frac{2 \text{ MVA (Versorgungstrafo)}}{62 \text{ kVA (21F6)}}$$
 = 33 \longrightarrow Keine Drossel notwendig

Eine Auflistung von Filtern und Drosseln => "5.4.1 Filter und Drosseln"


5.3.3 DC-Netzanschluss

ACHTUNG

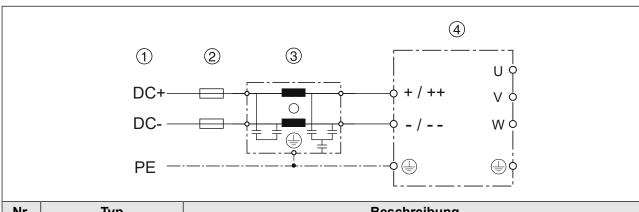
DC-Betrieb

▶ Die DC-Spannungsversorgung von 230V-Geräten ist nur nach Rücksprache mit KEB zulässig!

5.3.3.1 Klemmleiste X1A DC-Anschluss

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
+	DC-Klemmen	Flexible Leitung mit Aderendhülse 1,535 mm² (Ohne Aderendhülse bis max. 50 mm²) Bei 2 Leitern max. 16 mm² UL: Flexible Leitung ohne Aderendhülse AWG 161	3,23,7 Nm 2832 lb inch	Für IEC: 2 Für UL: 1
Abbildung 23: Klemmleiste X1A DC-Anschluss				

72

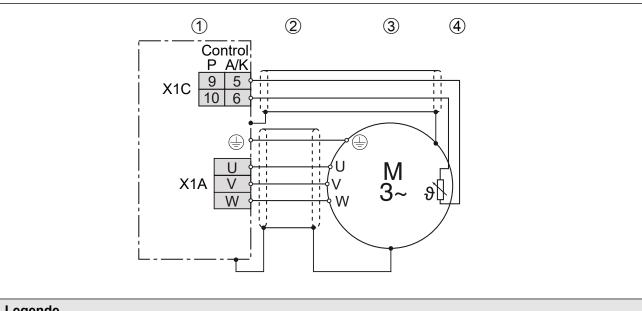


5.3.3.2 DC-Versorgung

ACHTUNG

Zerstörung des Antriebsstromrichters!

► Niemals "+ / ++" und "- / --" vertauschen!

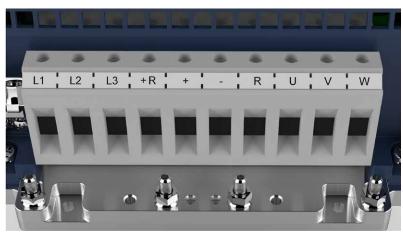


Nr.	Ir. Typ Beschreibung				
1	DC-Versorgung	2-phasig			
2	DC-Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung DC-Versorgung".			
3	HF-Filter	Zur Einhaltung der Grenzwerte gemäß EN 61800-3 erforderlich.			
4	Antriebsstromrichter	COMBIVERT F6			
A		50 41 /			

Abbildung 24: Anschluss der DC-Netzversorgung

5.3.4 Anschluss des Motors

5.3.4.1 Verdrahtung des Motors



Leg	gende
1	KEB COMBIVERT
2	Motorleitung, Schirm beidseitig und großflächig auf den metallisch blanken Rahmen oder die Montageplatte auflegen (ggf. Lack entfernen)
3	Drehstrommotor
4	Temperaturüberwachung (optional) => Gebrauchsanleitung "Steuerteil"

Abbildung 25: Verdrahtung des Motors

5.3.4.2 Klemmleiste X1A Motoranschluss

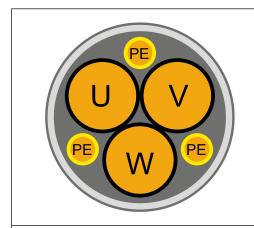

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
U		Flexible Leitung mit Aderendhülse 1,535 mm²		
V	Motoranschluss	(Ohne Aderendhülse bis max. 50 mm²) Bei 2 Leitern max. 16 mm²	3,23,7 Nm 2832 lb inch	Für IEC: 2 Für UL: 1
W		UL: Flexible Leitung ohne Aderendhülse AWG 161		

Abbildung 26: Klemmleiste X1A Motoranschluss

5.3.4.3 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Empfehlung: Phase/Phase <65 pF/m, Phase/Schirm <120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen => "5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung"
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 27: Symmetrische Motorleitung

5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters).

Durch den Einsatz von Motordrosseln oder Motorfiltern lässt sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 25 m.

Weitere Informationen zur Motorleitungslänge sind der entsprechenden Filteranleitung zu entnehmen.

5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.3.4.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt).
- · vom realen Effektivwert des Motorstroms.
- · von der Leitungslänge.
- vom Typ der verwendeten Leitung.
- · von Umgebungsbedingungen wie Bündelung und Temperatur.

5.3.4.7 Verschaltung des Motors

ACHTUNG

Fehlerhaftes Verhalten des Motors!

▶ Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen dU/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein dU/ dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

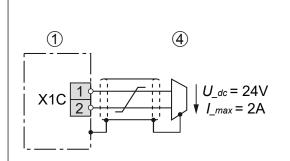
Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte => Gebrauchsanleitung "Steuerteil".

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn12 = 7) deaktiviert werden => *Programmierhandbuch*.

X1C	PIN	Name	Beschreibung
	1	BR+	Bremsenansteuerung / Ausgang +
	2	BR-	Bremsenansteuerung / Ausgang -
	3	reserviert	_
2 4 6	4	reserviert	_
	5	TA1	Temperaturerfassung / Ausgang +
	6	TA2	Temperaturerfassung / Ausgang -
1 3 5			
Abbildung 28: Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT			

X1C	PIN	Name	Beschreibung	
	1	BR+	Bremsenansteuerung / Ausgang +	
	2	BR-	Bremsenansteuerung / Ausgang -	
	3	0V	Zur Vergergung der Düskmelde eingänge	
	4	24Vout	Zur Versorgung der Rückmeldeeingänge	
2 4 6 8 10	5	DIBR1	Rückmeldeeingang 1 für Bremse oder Relais	
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais	
	7	reserviert	_	
	8	reserviert	_	
	9	TA1	Temperaturerfassung / Eingang +	
	10	TA2	Temperaturerfassung / Eingang -	
Abbildung 29: Klemmleiste X1C für Steuerkarte PRO				

ACHTUNG


Störungen durch falsche Leitungen oder Verlegung!

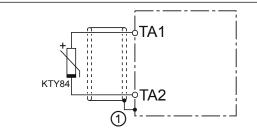
Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ► Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

COMBIVERT

Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.


Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.

Spezifikation in der jeweiligen

=> Gebrauchsanleitung "Steuerteil" beachten.

4 | Bremse | => (
Abbildung 30: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 31: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten.

5.3.5 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

ACHTUNG

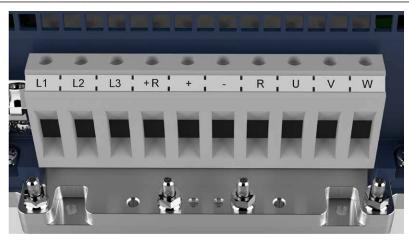
Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.3 Gerätedaten der 400V Peak Power-Geräte"

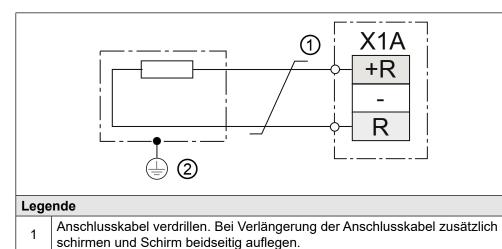
A VORSICHT

Heiße Oberflächen durch Belastung des Bremswiderstands!



Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.


5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
+R	Anschluss für Bremswiderstand (zwischen +R und R)	Flexible Leitung mit Aderendhülse 1,535 mm²		
		(Ohne Aderendhülse bis max. 50 mm²)	3,23,7 Nm	Für IEC: 2
		Bei 2 Leitern max. 16 mm²	2832 lb inch	Für UL: 1
R		UL: Flexible Leitung ohne Aderendhülse		
		AWG 161		

Abbildung 32: Klemmleiste X1A Anschluss Bremswiderstand

5.3.5.2 Verwendung eigensicherer Bremswiderstände

2 Die Schutzerdung erfolgt über das Gehäuse.

Abbildung 33: Verwendung eigensicherer Bremswiderstände

Eigensichere Bremswiderstände verhalten sich im Fehlerfall wie eine Schmelzsicherung. Sie unterbrechen sich ohne Brandgefahr.

Weitere Hinweise zu eigensicheren Bremswiderständen www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

5.3.5.3 Verwendung eines nicht eigensicheren Bremswiderstands

A WARNUNG

Verwendung nicht eigensicherer Bremswiderstände

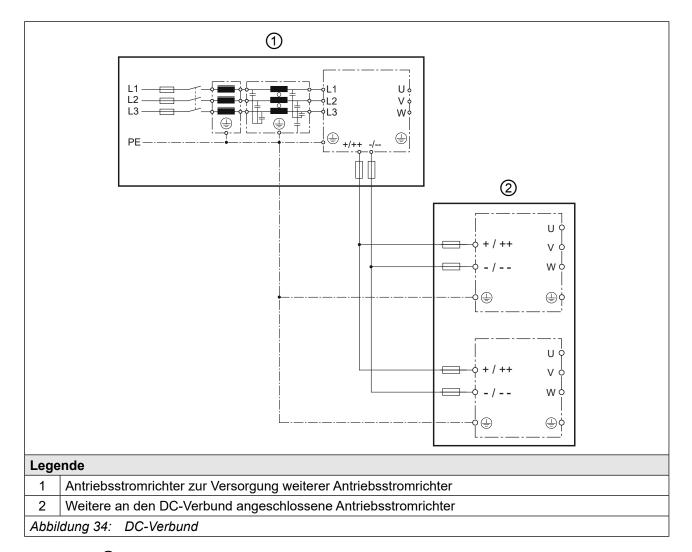
Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände
- ► => Gebrauchsanleitung "Installation Bremswiderstände"

Gebrauchsanleitung "Installation Bremswiderstände" www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

5.3.6 DC-Verbund

In einem DC-Verbund werden die Zwischenkreise mehrerer Antriebsstromrichter gekoppelt. Der Energieaustausch wird so untereinander ermöglicht und die Energieeffizienz der Anwendung wird erhöht.


Dieser Antriebsstromrichter kann als Teil eines DC-Verbundes entweder über die DC-Klemmen versorgt werden => "5.3.3 DC-Netzanschluss" oder über die DC-Klemmen weitere Antriebsstromrichter versorgen => "5.3.2 AC-Netzanschluss".

KEB Antriebsstromrichter erfüllen bei DC-Versorgung die Anforderungen der EMV-Produktnorm EN IEC 61800-3. Aufgrund der Vielzahl der möglichen Verschaltungsmöglichkeiten im DC-Verbund liegt die Konformität des Gesamtsystems im Verantwortungsbereich des Anwenders

<u>Folgende zusätzliche Sicherheitshinweise müssen bei der Verwendung dieses Antriebsstromrichters in einem DC-Verbund beachtet werden:</u>

- Dieser Antriebsstromrichter darf ausschließlich zusammen mit anderen F6 und S6 Antriebsstromrichtern der 400V-Klasse im DC-Verbund betrieben werden.
- Dieser Antriebsstromrichter muss in einem Gehäuse verbaut sein.
- Dieser Antriebsstromrichter muss an den DC-Klemmen mit Sicherungen geschützt werden => "3.3.6.2 Absicherung bei DC-Versorgung".
- Nach Auslösung einer Sicherung im DC-Verbund, infolge eines Kurzschlusses, sollten aufgrund der Gefahr einer Vorschädigung alle Sicherungen im DC-Verbund ausgetauscht werden.
- Die Parametrierung der Eingangsphasenausfallerkennung muss angepasst werden => F6 Programmierhandbuch.

<u>1 Bei Verwendung dieses Antriebsstromrichters zur Versorgung weiterer Antriebsstromrichter über die DC-Klemmen muss zusätzlich folgendes beachtet werden:</u>

- Die max. vorladbare Gesamtkapazität (interne Kapazität + externe Kapazität) darf nicht überschritten werden => "Tabelle 33: DC-Zwischenkreis / Bremstransistorfunktion der 400V Peak Power-Geräte".
- Die min. Wartezeit zwischen zwei Vorladevorgängen muss eingehalten werden => "5.2.1 Anschluss der Spannungsversorgung".
- Während der Vorladung dürfen über die DC-Klemmen versorgte Antriebsstromrichter nicht belastet werden.
- Die Überlastung des Gleichrichters muss durch den Anwender verhindert werden => "3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte".

② Bei Versorgung dieses Antriebsstromrichters über die DC-Klemmen muss zusätzlich folgendes beachtet werden:

Die Vorladung des Antriebsstromrichters muss durch den versorgenden Antriebsstromrichter oder ein externes Vorlademodul erfolgen.

5.4 Zubehör

5.4.1 Filter und Drosseln

Spannungsklasse	Antriebsstromrichter- größe	HF-Filter	Netzdrossel 50 Hz / 4% Uk
230 V	16	20E6T60-3000	16Z1B03-1000
Tabelle 38: Filter und Dros	sseln für 230V-Geräte		

Spannungsklasse	Antriebsstromrichter- größe	HF-Filter	Netzdrossel 50 Hz / 4% Uk
400 V	18	18E6T60-3000	18Z1B04-1000
400 V	19	20E6T60-3000	19Z1B04-1000
Tabelle 39: Filter und Dros	sseln für 400V-Geräte		

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.4.2 Schirmauflageblech Anbausatz

Bezeichnung	Materialnummer	
Schirmauflageblech Anbausatz	00F6V80-4001	
Tabelle 40: Schirmauflageblech Anbausatz		

5.4.3 Dichtung IP54-ready Geräte

Bezeichnung	Materialnummer
Dichtung IP54	40F6T45-0004
Tabelle 41: Dichtung für IP54-ready Geräte	

5.4.4 Nebenbaubremswiderstände

Technische Daten und Auslegung zu eigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

6 Zertifizierung

6.1 CE-Kennzeichnung

Die mit einem CE-Logo gekennzeichneten Antriebsstromrichter halten die Anforderungen, die durch die Maschinenrichtlinie sowie die EMV- und Rohs-Richtlinie und Energieeffizienzregulierung ein.

Für weitere Informationen zu den CE-Konformitätserklärungen.

=> "6.3 Weitere Informationen und Dokumentation"

6.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

UL file number E167544

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

- All models: Maximum Surrounding Air Temperature: 45°C
- Use 75°C Copper Conductors Only
- Models 18F6, 19F6 and 20F6: Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

All Models: Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 189 20, or by EATON, Type 170M1368, or by motor controller, see instruction manual for Branch Circuit Protection details.

When DC supplied:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 50000 rms Symmetrical Amperes, 680 Volts DC Maximum when protected by Semiconductor Fuses as Specified in the Manual.

CSA: For Canada, this marking shall be provided on the device or on a separate label shipped with the device.

Details of the prescribed Branch Circuit Protection as specified in the below section 'Branch Circuit Protection' of this Report need to be marked in the instruction manual.

 Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I"

- For installations according to Canadian National Standard C22.2 No. 274-13:
 For use in Pollution Degree 2 and Overvoltage Category III environments only.
- Control Circuit Overcurrent Protection Required or equivalent.
- WARNING The opening of the branch circuit protective device may be an
 indication that a fault current has been interrupted. To reduce the risk of fire or
 electrical shock, current-carrying parts and other components of the controller
 should be examined and replaced if damaged. If burnout of the current element of
 an overload relay occurs, the complete overload relay must be replaced.

ZERTIFIZIERUNG

- Internal Overload Protection Operates prior to reaching the 130% of the Motor Full Load Current, see manual for adjustment instructions or equivalent wording.
- External break resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time, (60 sec off-time)
- · Internal break resistor ratings and duty cycle:
 - Duty cycle 0.79%
 - Max. 0.95 sec on-time, (119.05 sec off-time)

6.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb-automation.com/de/suche

Allgemeine Anleitungen

- EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- · Eingangssicherungen gemäß UL
- · Programmierhandbuch für Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- · CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Weitere hier nicht aufgeführte Kennzeichnungen und Abnahmen werden, sofern zutreffend, durch ein entsprechendes Logo auf dem Typenschild oder Gerät gekennzeichnet. Die zugehörigen Nachweise / Zertifikate stehen Ihnen auf unserer Website zur Verfügung.

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

ÄNDERUNGSHISTORIE

7 Änderungshistorie

Version	Datum	Beschreibung
00	2024-05	Vorserienversion der Anleitung erstellt.
01	2024-08	Aufnahme der 230V-Geräte
02	2025-07	UL-Text aktualisiert. Angaben zu Motorschutzschalter, Leistungsschalter aufgenommen. Beschreibung der 400 V DC-Ready Geräte aufgenommen.

WEITERE KEB PARTNER WELTWEIT:

www.keb-automation.com/de/contact

Automation **mit Drive**

www.keb-automation.com

KEB Automation KG Südstraße 38 D-32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de