

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 3

Originalanleitung Dokument 20128423 DE 07

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

▲ GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. https://www.keb-automation.com/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	9
	Tabellenverzeichnis	10
	Glossar	12
	Normen für Antriebsstromrichter	14
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	14
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	14
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	15
		40
1	Grundlegende Sicherheitshinweise	. 16
	1.1 Zielgruppe	16
	1.2 Transport, Lagerung und sachgemäße Handhabung	16
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	
	1.4.1 EMV-gerechte Installation	
	1.4.2 Spannungsprüfung	
	1.4.3 Isolationsmessung	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	
	1.8 Entsorgung	23
2	Produktbeschreibung	24
_	_	
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	_
	2.4 Typenschlüssel	
	2.5 Typenschild	
	2.5.1 Konfigurierbare Optionen	29

INHALTSVERZEICHNIS

3	Technische Daten	30
	3.1 Betriebsbedingungen	30
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	31
	3.1.3 Chemisch/Mechanisch aktive Stoffe	31
	3.1.4 Elektrische Betriebsbedingungen	32
	3.1.4.1 Geräteeinstufung	32
	3.1.4.2 Elektromagnetische Verträglichkeit	32
	3.2 Gerätedaten der 230 V-Geräte	33
	3.2.1 Übersicht der 230 V-Geräte	33
	3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte	34
	3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V	35
	3.2.3 Ein- und Ausgangsströme/ Überlast für 230 V-Geräte	35
	3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte	36
	3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230 V-Geräte	38
	3.2.4 Verlustleistung bei Bemessungsbetrieb für 230 V-Geräte	41
	3.2.5 Absicherung für 230 V-Geräte	41
	3.3 Gerätedaten der 400 V-Geräte	42
	3.3.1 Übersicht der 400V-Geräte	42
	3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte	
	3.3.3 Ein- und Ausgangsströme/ Überlast für 400 V-Geräte	44
	3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	44
	3.3.3.1 Überlastcharakteristik (OL) für 400 V-Geräte	
	3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) für 400 V-Geräte	
	3.3.4 Übersicht der Gleichrichterdaten	51
	3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte	
	3.3.6 Absicherung für 400V-Geräte	
	3.3.6.1 Absicherung bei AC-Versorgung	
	3.3.6.2 Absicherung der 400 V-Geräte bei DC-Versorgung	
	3.3.6.3 Motorschutzschalter / Leistungsschalter	
	3.4 Allgemeine elektrische Daten	
	3.4.1 Schaltfrequenz und Temperatur	
	3.4.1.1 Schaltfrequenz und Temperatur der 230 V-Geräte	
	3.4.1.2 Schaltfrequenz und Temperatur der 400 V-Geräte	
	3.4.2 DC-Zwischenkreis / Bremstransistorfunktion	
	3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	
	3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	59
	3.4.3 Lüfter	
	3.4.3.1 Schaltverhalten der Lüfter	
	3.4.3.2 Schaltpunkte der Lüfter	61

4	EInbau	. 62
	4.1 Abmessungen und Gewichte	62
	4.1.1 Einbauversion Luftkühler	62
	4.1.2 Einbauversion Fluidkühler (Wasser)	63
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready	64
	4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready	65
	4.2 Schaltschrankeinbau	66
	4.2.1 Befestigungshinweise	66
	4.2.2 Einbauabstände	67
	4.2.3 Montage von IP54-ready Geräten	68
	4.2.4 Schaltschranklüftung	69
	4.2.5 Luftströme der Lüfter	69
5	Installation und Anschluss	. 70
	5.1 Übersicht des COMBIVERT F6	70
	5.2 Anschluss des Leistungsteils	73
	5.2.1 Anschluss der Spannungsversorgung	73
	5.2.1.1 Klemmleiste X1A	74
	5.2.2 Schutz- und Funktionserde	75
	5.2.2.1 Schutzerdung	75
	5.2.2.2 Funktionserdung	75
	5.3 Netzanschluss	76
	5.3.1 Netzzuleitung	76
	5.3.2 AC-Netzanschluss	
	5.3.2.1 AC-Versorgung 3-phasig	76
	5.3.2.2 Hinweis zu harten Netzen	77
	5.3.3 DC-Netzanschluss	
	5.3.3.1 Klemmleiste X1A DC-Anschluss	
	5.3.3.2 DC-Versorgung	79
	5.3.4 Anschluss des Motors	
	5.3.4.1 Verdrahtung des Motors	
	5.3.4.2 Klemmleiste X1A Motoranschluss	81
	5.3.4.3 Auswahl der Motorleitung	
	5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung	
	5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren	
	5.3.4.6 Motorleitungsquerschnitt	
	5.3.4.7 Verschaltung des Motors	
	5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)	
	5.3.5 Anschluss und Verwendung von Bremswiderständen	
	5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand	
	5.3.5.2 Verwendung eigensicherer Bremswiderstände	
	5.3.5.3 Verwendung nicht eigensicherer Bremswiderstände	88

INHALTSVERZEICHNIS

5.3.6 DC-Verbund	89
5.4 Zubehör	91
5.4.1 Filter und Drosseln	91
5.4.2 Dichtung für IP54-ready Geräte	91
5.4.3 Anbausatz Schirmauflagebleche	91
5.4.4 Nebenbaubremswiderstände	92
Betrieb von flüssigkeitsgekühlten Geräten	93
6.1 Wassergekühlte Geräte	93
6.1.1 Kühlkörper und Betriebsdruck	93
6.1.2 Materialien im Kühlkreislauf	93
6.1.3 Anforderungen an das Kühlmittel	94
6.1.4 Anschluss des Kühlsystems	96
6.1.5 Kühlmitteltemperatur und Betauung	97
6.1.5.1 Betauung	97
6.1.5.2 Zuführung temperierter Kühlflüssigkeit	97
6.1.7 Kühlmittelerwärmung	99
6.1.8 Typischer Druckverlust des Kühlkörpers	100
Zertifizierung	101
7.1 CE-Kennzeichnung	101
7.3 Weitere Informationen und Dokumentation	104
Änderungshistorie	105
	5.4 Zubehör 5.4.1 Filter und Drosseln 5.4.2 Dichtung für IP54-ready Geräte 5.4.3 Anbausatz Schirmauflagebleche 5.4.4 Nebenbaubremswiderstände Betrieb von flüssigkeitsgekühlten Geräten 6.1 Wassergekühlte Geräte 6.1.1 Kühlkörper und Betriebsdruck 6.1.2 Materialien im Kühlkreislauf 6.1.3 Anforderungen an das Kühlmittel 6.1.4 Anschluss des Kühlsystems 6.1.5 Kühlmitteltemperatur und Betauung 6.1.5.1 Betauung 6.1.5.2 Zuführung temperierter Kühlflüssigkeit 6.1.6 Zulässiger Volumenstrom bei Wasserkühlung 6.1.7 Kühlmittelerwärmung 6.1.8 Typischer Druckverlust des Kühlkörpers Zertifizierung 7.1 CE-Kennzeichnung 7.2 UL-Zertifizierung 7.3 Weitere Informationen und Dokumentation

Abbildungsverzeichnis

Abbildung 1:	Typenschild (exemplarisch)	28
Abbildung 2:	Konfigurierbare Optionen	29
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/In (OL)	37
Abbildung 4:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 17er-Gerät	
Abbildung 5:	Abschaltzeit t in Abhängigkeit der Überlast I/I _N (OL)	46
Abbildung 6:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 19er-Gerät	47
Abbildung 7:	Blockschaltbild des Energieflusses	57
Abbildung 8:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	61
Abbildung 9:	Abmessungen Einbauversion Luftkühler	62
Abbildung 10:	Abmessungen Einbauversion Fluidkühler (Wasser)	63
Abbildung 11:	Abmessungen Durchsteckversionen Luftkühler IP20, IP54-ready	64
Abbildung 12:	Abmessungen Durchsteckversionen Fluidkühler (Wasser) IP20, IP54-ready	65
Abbildung 13:	Einbauabstände	67
Abbildung 14:	Montage von IP54-ready Geräten	68
Abbildung 15:	Schaltschranklüftung	69
Abbildung 16:	Luftströme der Lüfter	69
Abbildung 17:	F6 Gehäuse 3 Draufsicht	70
Abbildung 18:	F6 Gehäuse 3 Vorderansicht	71
Abbildung 19:	F6 Gehäuse 3 Rückansicht mit Steuerkarte APPLIKATION	72
Abbildung 20:	Eingangsbeschaltung	73
Abbildung 21:	Klemmleiste X1A	74
Abbildung 22:	Anschluss für Schutzerde	75
Abbildung 23:	Anschluss der Netzversorgung 3-phasig	76
Abbildung 24:	Klemmleiste X1A DC-Anschluss	78
Abbildung 25:	Anschluss der DC-Netzversorgung	79
Abbildung 26:	Verdrahtung des Motors	80
Abbildung 27:	Klemmleiste X1A Motoranschluss	81
Abbildung 28:	Symmetrische Motorleitung	
Abbildung 29:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	84
Abbildung 30:	Klemmleiste X1C für Steuerkarte PRO	84
Abbildung 31:	Anschluss der Bremsenansteuerung	85
Abbildung 32:	Anschluss eines KTY-Sensors	85
Abbildung 33:	Klemmleiste X1A Anschluss Bremswiderstand	87
Abbildung 34:	Verdrahtung eines eigensicheren Bremswiderstands	88
Abbildung 35:	DC-Verbund	90
Abbildung 36:	Offene Rohrenden zum Anschluss des Wasserkühlsystems	96
Abbildung 37:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz bei Wasser-Glykolgemisch	99
Abbildung 38:	Typischer Druckverlust in Abhängigkeit des Volumenstroms	100

TABELLENVERZEICHNIS

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	27
Tabelle 2:	Klimatische Umweltbedingungen	30
Tabelle 3:	Mechanische Umweltbedingungen	31
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	31
Tabelle 5:	Geräteeinstufung	32
Tabelle 6:	Elektromagnetische Verträglichkeit	32
Tabelle 7:	Übersicht der 230 V-Gerätedaten	34
Tabelle 8:	Eingangsspannungen und -frequenzen der 230 V-Geräte	34
Tabelle 9:	DC-Zwischenkreisspannung für 230 V-Geräte	34
Tabelle 10:	Ausgangsspannungen und -frequenzen der 230 V-Geräte	35
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 230 V	35
Tabelle 12:	Eingangsströme der 230 V-Geräte	35
Tabelle 13:	Frequenzabhängiger Maximalstrom für Gerätegröße 15	39
Tabelle 14:	Frequenzabhängiger Maximalstrom für Gerätegröße 16	40
Tabelle 15:	Frequenzabhängiger Maximalstrom für Gerätegröße 17	40
Tabelle 16:	Verlustleistung der 230 V-Geräte	41
Tabelle 17:	Absicherungen für 230 V / 240 V-Geräte	41
Tabelle 18:	Übersicht der 400 V-Gerätedaten	43
Tabelle 19:	Eingangsspannungen und -frequenzen der 400 V-Geräte	43
Tabelle 20:	DC-Zwischenkreisspannung für 400 V-Geräte	43
Tabelle 23:	Ein- und Ausgangströme der 400 V-Geräte	44
Tabelle 21:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	44
Tabelle 22:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	44
Tabelle 24:	Frequenzabhängiger Maximalstrom für Gerätegröße 17	48
Tabelle 25:	Frequenzabhängiger Maximalstrom für Gerätegröße 18	49
Tabelle 26:	Frequenzabhängiger Maximalstrom für Gerätegröße 19 (2 kHz)	49
Tabelle 27:	Frequenzabhängiger Maximalstrom für Gerätegröße 19 (4 kHz)	50
Tabelle 28:	Frequenzabhängiger Maximalstrom für Gerätegröße 20	50
Tabelle 29:	Übersicht der Gleichrichterdaten	51
Tabelle 30:	Verlustleistung der 400 V-Geräte	52
Tabelle 31:	Absicherungen für 400 V / 480 V-Geräte	52
Tabelle 32:	DC-Absicherungen für 400 V / 480 V-Geräte	53
Tabelle 33:	Empfohlene Motorschutzschalter / Leistungsschalter für 400 V / 480 V-Geräte	54
Tabelle 34:	Alternative Motorschutzschalter / Leistungsschalter für 400 V / 480 V-Geräte	55
Tabelle 35:	Schaltfrequenz und Temperatur der 230 V-Geräte	56
Tabelle 36:	Schaltfrequenz und Temperatur der 400 V-Geräte	56
Tabelle 37:	DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	58
Tabelle 38:	DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	59
Tabelle 39:	Lüfter	60
Tabelle 40:	Schaltpunkte der Lüfter	61
Tabelle 41:	Befestigungshinweise für Einbauversion	66
Tabelle 42:	Befestigungshinweise für Durchsteckversion	66
Tabelle 43:	Filter und Drosseln für 230 V-Geräte	91

TABELLENVERZEICHNIS

Tabelle 44:	Filter und Drosseln für 400 V-Geräte	91
Tabelle 45:	Dichtung für IP54-ready Geräte	91
Tabelle 46:	Anbausatz Schirmauflageblech	91
Tabelle 47:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	94
Tabelle 48:	Anforderungen an das Kühlmittel	94
Tabelle 49:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	95
Tabelle 50:	Taupunkttabelle	97
Tabelle 51:	Zulässiger Volumenstrom bei Wasserkühlung	98

Glossar

	l	
•	EtherCAI	Echtzeit-Ethernet-Bussystem der Fa.
. •		Beckhoff
3-phasiges Netz	Ethernet	Echtzeit-Bussystem - definiert Proto-
Wechselstrom oder -spannung		kolle, Stecker, Kabeltypen
Ab 07/2019 ersetzt AIC die bisherige	FE	Funktionserde
Bezeichnung AFE	FSoE	Funktionale Sicherheit über Ethernet
Ab 07/2019 ersetzt AIC-Filter die	FU	Antriebsstromrichter
bisherige Bezeichnung AFE-Filter	Gebernachbil-	Softwaregenerierter Geberausgang
Active Infeed Converter	dung	
Filter für Active Infeed Converter	GND	Bezugspotenzial, Masse
Die Applikation ist die bestimmungs-	GTR7	Bremstransistor
	Hersteller	Der Hersteller ist KEB, sofern nicht
Produktes		anders bezeichnet (z.B. als Ma-
Geberlose Regelung von Asynchron-		schinen-, Motoren-, Fahrzeug- oder
motoren		Klebstoffhersteller)
Automatische Motoridentifikation;	HF-Filter	KEB spezifischer Ausdruck für einen
Einmessen von Widerstand und		EMV-Filter (Beschreibung siehe
Induktivität		EMV-Filter.)
Amerikanische Kodierung für Lei-	Hiperface	Bidirektionale Geberschnittstelle der
tungsquerschnitte		Fa. Sick-Stegmann
Business-to-business	HMI	Visuelle Benutzerschnittstelle
Open-Source-Echtzeitschnittstelle		(Touchscreen)
für Sensoren und Aktoren (DIN		Schnelles, serielles Protokoll
5008)	HTL	Inkrementelles Signal mit einer Aus-
Feldbussystem		gangsspannung (bis 30V) -> TTL
Vollständiges Antriebsmodul inkl.	IEC	IEC xxxxx steht für eine Internatio-
<u> </u>		nale Norm der International Electro-
		technical Commission
		Schutzart (xx für Klasse)
	KEB-Produkt	Das KEB-Produkt ist das Produkt
•		welches Gegenstand dieser Anlei-
	14T) (tung ist
• •		Silizium Temperatursensor (gepolt)
<u> </u>	Kunde	Der Kunde hat ein KEB-Produkt von
•		KEB erworben und integriert das
		KEB-Produkt in sein Produkt (Kun-
		den-Produkt) oder veräußert das KEB-Produkt weiter (Händler)
•	MCM	Amerikanische Maßeinheit für große
,	IVICIVI	Leitungsquerschnitte
	Modulation	Bedeutet in der Antriebstechnik,
	Modulation	dass die Leistungshalbleiter ange-
		steuert werden
	MTTF	Mittlere Lebensdauer bis zum Ausfall
_		
•		
	Ab 07/2019 ersetzt AIC die bisherige Bezeichnung AFE Ab 07/2019 ersetzt AIC-Filter die bisherige Bezeichnung AFE-Filter Active Infeed Converter Filter für Active Infeed Converter Die Applikation ist die bestimmungsgemäße Verwendung des KEB-Produktes Geberlose Regelung von Asynchronmotoren Automatische Motoridentifikation; Einmessen von Widerstand und Induktivität Amerikanische Kodierung für Leitungsquerschnitte Business-to-business Open-Source-Echtzeitschnittstelle für Sensoren und Aktoren (DIN 5008) Feldbussystem Vollständiges Antriebsmodul inkl. Hilfsausrüstung (Schaltschrank) KEB Antriebsstromrichter KEB Inbetriebnahme- und Parametriersoftware Gleichstrom oder -spannung Demineralisiertes Wasser, auch als deionisiertes (DI) Wasser bezeichnet Deutsches Institut für Normung CiA DS 402 - CAN-Geräteprofil für Antriebe Einschaltdauer Schutzkleinspannung Energy Management System EMV-Filter werden zur Unterdrückung von leitungsgebundenen Störungen in beiden Richtungen zwischen Antriebsstromrichter und Netz eingesetzt. Europäische Norm	1-phasiges Netz 3-phasiges Netz Wechselstrom oder -spannung Ab 07/2019 ersetzt AIC die bisherige Bezeichnung AFE Ab 07/2019 ersetzt AIC-Filter die bisherige Bezeichnung AFE-Filter Active Infeed Converter Filter für Active Infeed Converter Die Applikation ist die bestimmungs- gemäße Verwendung des KEB- Produktes Geberlose Regelung von Asynchron- motoren Automatische Motoridentifikation; Einmessen von Widerstand und Induktivität Amerikanische Kodierung für Lei- tungsquerschnitte Business-to-business Open-Source-Echtzeitschnittstelle für Sensoren und Aktoren (DIN 5008) Feldbussystem Vollständiges Antriebsmodul inkl. Hilfsausrüstung (Schaltschrank) KEB Antriebsstromrichter KEB Inbetriebnahme- und Paramet- riersoftware Gleichstrom oder -spannung Demineralisiertes Wasser, auch als deionisiertes (DI) Wasser bezeichnet Deutsches Institut für Normung CiA DS 402 - CAN-Geräteprofil für Antriebe Einschaltdauer Schutzkleinspannung Energy Management System EMV-Filter werden zur Unterdrü- ckung von leitungsgebundenen Störungen in beiden Richtungen zwischen Antriebsstromrichter und Netz eingesetzt. Ethernet FE FSOE FU Gebernachbil- dung GND GTR7 Hersteller HF-Filter Hiperface HIP-Filter HIP-Filter Hiperface HIP-Filter Hiperface HIP-Filter HIP-F

Bidirektionale Geberschnittstelle der

Der Endkunde ist der Verwender des

Fa. Heidenhain

Kunden-Produkts

EnDat

Endkunde

NHN	Normalhöhennull; bezogen auf die festgelegte Höhendefinition in Deutschland (DHHN2016). Die	STO	Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2
	internationalen Angaben weichen	TTL	Logik mit 5V Betriebsspannung
	i.d.R. nur wenige cm bis dm hiervon	USB	Universell serieller Bus
	ab, sodass der angegebene Wert	VARAN	Echtzeit-Ethernet-Bussystem
	auf die regional geltende Definition		
	übernommen werden kann.		
Not-Aus	Abschalten der Spannungsversorgung im Notfall		
Not-Halt	Stillsetzen eines Antriebs im Notfall (nicht spannungslos)		
OC	Überstrom (Overcurrent)		
ОН	Überhitzung		
OL	Überlast		
OSSD	Ausgangsschaltelement; Ausgangs-		
OCCD	signal, dass in regelmäßigen Ab-		
	stände auf seine Abschaltbarkeit hin		
	geprüft wird. (Sicherheitstechnik)		
PDS	Leistungsantriebssystem inkl. Motor		
. 50	und Meßfühler		
PE	Schutzerde		
PELV	Sichere Schutzkleinspannung, ge-		
	erdet		
PFD	Begriff aus der Sicherheitstechnik		
	(EN 61508-17) für die Größe der		
	Fehlerwahrscheinlichkeit		
PFH	Begriff aus der Sicherheitstechnik		
	(EN 61508-17) für die Größe der		
	Fehlerwahrscheinlichkeit pro Stunde		
Pt100	Temperatursensor mit R0=100Ω		
Pt1000	Temperatursensor mit R0=1000Ω		
PTC	Kaltleiter zur Temperaturerfassung		
PWM	Pulsweitenmodulation (auch Puls-		
	breitenmodulation PBM)		
RJ45	Modulare Steckverbindung mit 8		
	Leitungen		
SCL	Geberlose Regelung von Synchron-		
	motoren		
SELV	Sichere Schutzkleinspannung, unge-		
	erdet		
SIL	Der Sicherheitsintegritätslevel ist		
	eine Maßeinheit zur Quantifizierung		
	der Risikoreduzierung. Begriff aus		
	der Sicherheitstechnik (EN 61508		
	-17)		
SPS	Speicherprogrammierbare Steue-		
	rung		
SS1	Sicherheitsfunktion "Sicherer Halt 1"		
	gemäß IEC 61800-5-2		
SSI	Synchron-serielle Schnittstelle für		
	Geber		

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD)
Amerikanische Version der IEC 61800-5-1 mit "National Deviations" für USA und Canada
Drehzahlveränderbare elektrische Antriebe - Teil 9-2: Ökodesign für Antriebssysteme, Motorstarter, Leistungselektronik und deren angetriebene Einrichtungen - Indikatoren für die Energieeffizienz von Antriebssystemen und Motorstartern

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC 55011/CISPR 11)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3 1994)
EN61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems (IEC 61000-2-1)
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)

EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)
EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VDE 0100	Errichten von Niederspannungsanlagen – Beachtung aller Teile (IEC 60364-x-x)
VGB S 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über VDE 0100.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ► Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- ➤ Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder VDE 0100 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-rcd-00008_de.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig, USA UL: 480 / 277 V. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ▶ Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- · Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

A VORSICHT

Hoher Schalldruckpegel während des Betriebs!

Hörschäden möglich!

Gehörschutz tragen!

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

▶ Netzdrossel mit U_k = 4% einsetzen.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-format-capacitors-00009_de.pdf

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- ► Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE:	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA:	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"
Slowakei			
KEB Automation KG	ASEKOL:	RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter mit Funktionaler Sicherheit, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind.

Es stehen diverse Sicherheitsfunktionen für verschiedene Anwendungen zur Verfügung. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Maschinenrichtlinie. Die möglichen Funktionen sind über eine Bauartprüfung zertifiziert.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Es sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen in der Industrie bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- · Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- · Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6
Leistungsbereich: 11...18,5 kW / 230V
18,5...37 kW / 400 V

Gehäuse: 3

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt:
 EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- · Großer Betriebstemperaturbereich
- · Geringe Schaltverluste durch IGBT-Leistungsteil
- Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- Temperaturgesteuerte Lüfter, leicht austauschbar
- Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch l²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2

2.4 Typenschlüssel

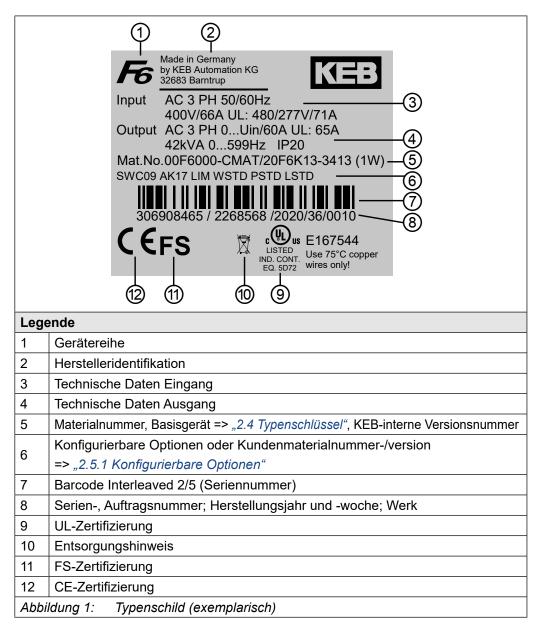
2.4 Typenschlusser		
xxF6xxx-xxx	x	
	Kühlkörperausführung	1: Luftkühler, Einbauversion 2: Fluidkühler (Wasser), Einbauversion 3: Luftkühler, Durchsteckversion IP54-ready 4: Fluidkühler (Wasser), Durchsteckversion IP54-ready 5: Luftkühler, Durchsteckversion IP20 6: Fluidkühler (Wasser), Durchsteckversion IP54-ready, Unterbaubremswiderstände 7: Fluidkühler (Öl), Durchsteckversion IP54-ready 8: Fluidkühler (Öl), Durchsteckversion IP54-ready, Unterbaubremswiderstände 9: Fluidkühler (Wasser), Einbauversion, Unterbaubremswiderstände A: Fluidkühler (Wasser), Einbauversion, High-Performance, Unterbaubremswiderstände B: Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance, Unterbaubremswiderstände C: Luftkühler, Einbauversion, Version 2 D: Luftkühler, Einbauversion, High-Performance E: Fluidkühler (Wasser), Einbauversion, High-Performance Fluidkühler (Wasser), Einbauversion, High-Performance F: Luftkühler, Durchsteckversion IP54-ready, High-Performance Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance H: Luftkühler, Konvektion, Durchsteckversion IP54-ready
	Steuerkartenvariante	APPLIKATION 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3) B: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3), Alternative Klemme KOMPAKT 1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 1) 2: Multi Encoder Interface, CAN® 2), STO, VARAN PRO 0: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3) 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-schnittstelle 3) 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3); Sicheres Relais 4: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais 5: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais 6: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Alternative Klemme

weiter auf nächster Seite

x x F 6 x x x - x	xxx			
		0: 2kHz/125%/150%	8: 2kHz/180%/216%	
		1: 4kHz/125%/150%	9: 4kHz/180%/216%	
		2: 8 kHz/125%/150% A: 8 kHz/180%/216%		
	Schaltfrequenz,	3: 16 kHz/125%/150% B: 8 kHz / HSD		
	Softwarestromgrenze,	4: 2kHz/150%/180%	C: 6kHz / HSD	
	Abschaltstrom	5: 4kHz/150%/180%	D: Sonderschaltfrequenz / Überlast	
		6: 8kHz/150%/180%	E: Sondergerät	
		7: 16 kHz/150%/180%		
		1: 3ph 230 V AC/DC mit Bro	emetransistor	
		2: 3ph 230 V AC/DC ohne I		
		3: 3ph 400 V AC/DC mit Bro		
		4: 3ph 400 V AC/DC ohne Bremstransistor		
	Cooperate /	A: 3ph 400 V AC/DC inkl. GTR7 / max. Gleichrichter /		
	Spannung/	A: max. Vorladung		
	Anschlussart	B: 3ph 400 V AC/DC ohne GTR7 / max. Gleichrichter /		
		B: max. Vorladung		
		C: 3ph 400 V AC/DC GTR7-Variante 2		
		D. 3ph 400 V AC/DC GTR7-Variante 2 / max. Gleichrich-		
		ter / max. Vorladung		
	Gehäuse	29		
		1: Sicherheitsmodul Typ 1/	STO bei Steuerungstyp K	
	A	3: Sicherheitsmodul Typ 3	<u> </u>	
	Ausstattung	4: Sicherheitsmodul Typ 4		
		5: Sicherheitsmodul Typ 5		
		A: APPLIKATION		
	Steuerungstyp	K: KOMPAKT		
		P: PRO		
	Baureihe	COMBIVERT F6		
	Gerätegröße	1033		
Tabelle 1: Typens	chlüssel			

¹ EtherCAT.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.


CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

³⁾ Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

2.5 Typenschild

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
Zubehör	Axxx 1)	Gewähltes Zubehör		
Zubenor	NAK	Kein Zubehör		
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz		
freischaltung	ULO	> 599 Hz freigeschaltet		
Covidentaiotura	WSTD	Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Darametriarung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundespezifisch		
Typopopiidlogo	LSTD	Logo - Standard		
Typenschildlogo	Lxxx 1)	Logo - Kundespezifisch		
Abbildung 2: Konfi	igurierbare Optionei	1		

[&]quot;,x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeucht	е	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeucht	e	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)
Kühlmitteleintritts- temperatur	Luft	_	_	540°C (erweitert auf -1045°C)
Relative Luftfeuchte		EN 60721-3-3	3K3	585% (ohne Kondensation)
Bau- und Schutzart		EN 60529	IP20	Schutz gegen Fremdkörper > ø12,5 mm Kein Schutz gegen Wasser Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist. Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)
Aufstellhöhe		_	_	 Max. 2000 m über NN Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen. Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzliche Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.
Tabelle 2: Klimat	ische Umweltk	bedingungen		

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen		
Cobuingungagran	EN 60721-3-1	4140	Schwingungsamplitude 1,5 mm (29 Hz)		
Schwingungsgrenzwerte	EN 60721-3-1	1M2	Beschleunigungsamplitude 5 m/s² (9200 Hz)		
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms		
Transport	Norm	Klasse	Bemerkungen		
			Schwingungsamplitude 3,5 mm (29 Hz)		
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)		
			(Beschleunigungsamplitude 15 m/s² (200500 Hz)) 1)		
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s ² ; 11 ms		
Betrieb	Norm	Klasse	Bemerkungen		
	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz)		
Cobuingungagran	EN 60721-3-3		Beschleunigungsamplitude 10 m/s² (9200 Hz)		
Schwingungsgrenzwerte	EN 61900 E 1		Schwingungsamplitude 0,075 mm (1057 Hz)		
	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (57150 Hz)		
Schockgrenzwerte	EN 60721-3-3	3M4	100 m/s²; 11 ms		
Tabelle 3: Mechanische Umweltbedingungen					

¹⁾ Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Gase	Gase	EN 60721-3-1	1C2	_
Kontamination	Feststoffe	EN 00721-3-1	1S2	-
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-2	2C2	-
	Feststoffe		2S2	-
Betrieb	Betrieb		Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-3	3C2	-
Kontamination	Feststoffe	EN 00/21-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überspannungskategorie	EN 61800-5-1	III	_
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen
Leitungsgeführte Störaussen- dung	EN 61800-3	C2 / C3	Der angegebene Wert wird nur in Verbindung mit einem Filter eingehalten. Angaben der Entstörung (Bemessungsschaltfrequenz, max. Motorleitungslänge) ist der entsprechenden Filteranleitung zu entnehmen.
Abgestrahlte Störaussendung	EN 61800-3	C2	_
Störfestigkeit	Norm	Pegel	Bemerkungen
Statische Entladungen	EN 61000-4-2	8 kV 4 kV	AD (Luftentladung) CD (Kontaktentladung)
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	-
Burst - AC - Leistungsschnitt- stellen	EN 61000-4-4	4 kV	-
Surge - Leistungsschnittstellen	EN 61000-4-5	1kV 2kV	Phase-Phase Phase-Erde
Leitungsgeführte Störfestig- keit, induziert durch hochfre- quente Felder	EN 61000-4-6	10 V	0,1580 MHz
		10 V/m	80 MHz1 GHz
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz
		1 V/m	22,7 GHz
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %
-einbrüche	EN 61000-4-34	_	Klasse 3
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %
Spannungsabweichungen	EN 61000-2-4	_	±10%
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %
Tabelle 6: Elektromagnetisci	he Verträglichkeit		

3.2 Gerätedaten der 230 V-Geräte

3.2.1 Übersicht der 230 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			15	16	17
Gehäuse		3			
Ausgangsbemessungsscheinleistung		Sout / kVA	19	25	30
Max. Motorbemessungsleistung	1)	Pmot / kW	11	15	18,5
Eingangsbemessungsspannung		Un / V		230 (UL: 240)	
Eingangsspannungsbereich		Uin / V		170264	
Netzphasen				3	
Netzfrequenz		fn / Hz		50 / 60 ±2	
Eingangsbemessungsstrom @ UN = 230V		lin / A	57	68	82
Eingangsbemessungsstrom @ UN = 240V		lin_UL / A	57	68	82
Isolationswiderstand @ <i>Udc</i> = 500V		Riso / MΩ		> 20	
Ausgangsspannung		Uout / V		0 <i>Uin</i>	
Ausgangsfrequenz	2)	fout / Hz		0599	
Ausgangsphasen				3	
Ausgangsbemessungsstrom @ UN = 230V		In / A	48	62	75
Ausgangsbemessungsstrom @ UN = 240V		IN_UL / A	48	62	75
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %		150	
Softwarestromgrenze	3)	 Ilim %		150	
Abschaltstrom	3)	loc / %		180	
Bemessungsschaltfrequenz		fsn / kHz	4	4	4
Max. Schaltfrequenz	5)	fs_max / kHz		16	
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> _D / W	397	533	667
Überlaststrom über Zeit	3)	IOL / %	"3.2.3.1 Überlastcharakteristik (OL) für 230 V Geräte"		
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	158 / 180	160 / 180	132 / 180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	123 / 180	127 / 180	105 / 180
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	79 / 180	87 / 180	72 / 169
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	35 / 111	45 / 127	37 / 105
				weiter au	ıf nächster Seite

GERÄTEDATEN DER 230V-GERÄTE

Gerätegröße			15	16	17	
Gehäuse	3					
Max. Bremsstrom		IB_max / A		76		
Min. Bremswiderstandswert		$R_{B_min} \ / \ \Omega$		6		
Bremstransistor ⁶⁾			Max. Spieldauer: 120 s; Max. ED: 50 %			
Schutzfunktion für Bremstransistor	Schutzfunktion für Bremstransistor		Kurzschlussüberwachung			
Schutzfunktion Bremswiderstand (Error GTR7 always on)			Feedbacksignala	auswertung und S	tromabschaltung	
Max. Motorleitungslänge geschirmt 8) // m		100				
Tabelle 7: Übersicht der 230 V-Geräteda	aten					

Bemessungsbetrieb entspricht $U_N = 230 \text{ V}$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten "3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating "3.4.1.1 Schaltfrequenz und Temperatur der 230 V-Geräte".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.
- ⁸⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.

3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte

Eingangsspannungen und -frequenzen					
Eingangsbemessungsspannung	Un / V	230			
Nominal-Netzspannung (USA)	UN_UL / V	240			
Eingangsspannungsbereich	UIN / V	170264			
Netzphasen		3			
Netzfrequenz	f _N / Hz	50/60			
Netzfrequenztoleranz f _{Nt} / H		± 2			
Tabelle 8: Eingangsspannungen und -frequenzen der 230 V-Geräte					

DC-Zwischenkreisspannung					
Zwischenkreis Bemessungsspannung @ $U_N = 230 \text{V}$ U_{N_dc} / V 325					
Zwischenkreis Bemessungsspannung @ UN_UL = 240 V	UN_UL_dc / V	339			
Zwischenkreis Arbeitsspannungsbereich	Udc / V	240373			
Tabelle 9: DC-Zwischenkreisspannung für 230 V-Geräte					

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Achtung! Geräte mit einer maximaler Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

Ausgangsspannungen und -frequenzen				
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in		
Ausgangsfrequenz	2) fout / Hz	0599		
Ausgangsphasen		3		
Tabelle 10: Ausgangsspannungen und -frequenzen der 230 V-Geräte				

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V").

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel				
Netzdrossel <i>U</i> _k	4					
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und				
Antriebsstromrichter geregelt	8	Motordrossel an einem weichen Netz:				
Motordrossel Uk	1	230 V-Netzspannung (100%) - 25,3V reduzie Spannung (11%) = 204,7 V-Motorspannung				
Weiches Netz	2	= opannang (** /o/ _o i,; * meterepannang				
Tabelle 11: Beispiel zur Berechnung der möglichen Motorspannung für 230 V						

3.2.3 Ein- und Ausgangsströme/ Überlast für 230 V-Geräte

Gerätegröße			15	16	17
Eingangsbemessungsstrom @ UN = 230 V	1)	lin / A	57	68	82
Eingangsbemessungsstrom @ U _{N_UL} = 240 V	1)	Iin_UL / A	57	68	82
Ausgangsbemessungsstrom @ UN = 230 V	,	In / A	48	62	75
Ausgangsbemessungsstrom @ UN_UL = 240 V		IN_UL / A	48	62	75
Ausgangsbemessungsüberlast (60 s)	2)	160s / %	150	150	150
Überlaststrom	2)	IOL / %	=> "3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte"		
Softwarestromgrenze	2) 3)	Iim %	150	150	150
Abschaltstrom	2)	loc / %	180	180	180
Tabelle 12: Eingangsströme der 230 V-Geräte					

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

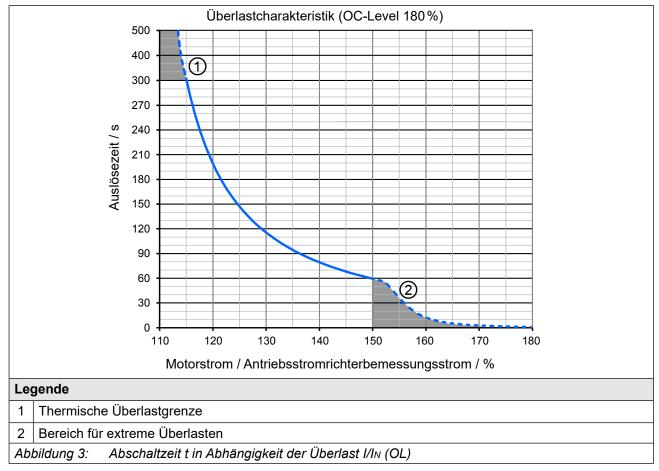
²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

GERÄTEDATEN DER 230 V-GERÄTE

3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150 % für 60 s betrieben werden.


Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/ IN (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

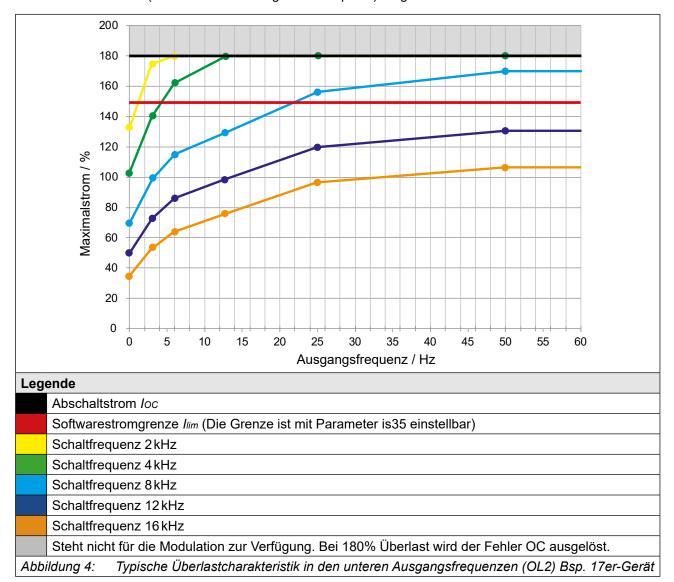
- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden
 3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230 V-Geräte".

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann der Integrator nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230 V-Geräte

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: Bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgende Kennlinie gibt den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 12,5 Hz, 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 17 (mit 2 kHz Bemessungsschaltfrequenz) dargestellt.

Der frequenzabhängige Maximalstrom I_{out_max} / % bezieht sich prozentual auf den Ausgangsbemessungsstrom I_N .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße			15					
Bemessungsschaltfrequenz			4 kHz					
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50
		2 kHz	158	180	180	180	180	180
Eroguanzahhängigar Mavimalatrom @ fa	lout_max / %	4 kHz	123	169	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)		8kHz	79	113	133	158	180	180
Basic Time Period – 62,5 µs (Parameter 1822–0)		16 kHz	35	56	69	85	104	117
		1,75 kHz	158	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 \(\mu \)s (Parameter is 22=1)	lout_max / %	3,5 kHz	132	180	180	180	180	180
		7kHz	90	127	149	176	180	180
Basic Time Feriou = 71,4 µs (Farameter 1822=1)		14 kHz	44	68	81	100	120	133
		1,5 kHz	158	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	141	180	180	180	180	180
Basic Time Period = 83,3 µs (Parameter is22=2)	Iout_max I 70	6kHz	101	141	165	180	180	180
Basic Time Periou – 63,3 µs (Parameter 1822–2)		12 kHz	52	79	94	115	135	150
		1,25 kHz	158	180	180	180	180	180
Eroguanzahhängigar Mavimalatram @ fa	1 10/	2,5 kHz	150	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	112	155	180	180	180	180
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	66	96	114	137	159	175
Tabelle 13: Frequenzabhängiger Maximalstron	n für Geräte	größe 15						

GERÄTEDATEN DER 230V-GERÄTE

Gerätegröße			16					
Bemessungsschaltfrequenz			4 kHz					
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50
		2kHz	160	180	180	180	180	180
Fraguenzahhängiger Meyimeletrom @ fe	1 10/	4 kHz	127	171	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / %	8 kHz	87	121	140	157	180	180
		16 kHz	45	66	79	92	116	127
		1,75 kHz	160	180	180	180	180	180
Evaguanzahhängigar Mayimalatram @ fa	lout_max / %	3,5 kHz	136	180	180	18	180	180
Frequenzabhängiger Maximalstrom @ fs		7 kHz	97	134	154	172	180	180
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	53	77	92	106	131	143
		1,5 kHz	160	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	144	180	180	180	180	180
Basic Time Period = 83,3 µs (Parameter is22=2)	Iout_max I 70	6 kHz	107	146	169	180	180	180
Basic Time Fellou = 65,5 μs (Farameter 1822-2)		12kHz	61	89	105	119	145	158
		1,25 kHz	160	180	180	180	180	180
	1	2,5 kHz	151	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	117	159	180	180	180	180
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	74	105	123	138	167	180
Tabelle 14: Frequenzabhängiger Maximalstron	n für Geräte	größe 16						

Gerätegröße					1	7		
Bemessungsschaltfrequenz			4 kHz					
Ausgangsfrequenz			0	3	6	12,5	25	50
		2 kHz	132	175	180	180	180	180
Francisco Marinalatram & f	1 . / 0/	4 kHz	105	141	163	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 \(\mu \) (Parameter is 22=0)	lout_max / %	8 kHz	72	100	116	129	156	169
		16 kHz	37	55	65	76	96	105
		1,75 kHz	132	175	180	180	180	180
	lout_max / %	3,5 kHz	112	150	172	180	180	180
		7 kHz	90	110	128	142	170	180
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	44	64	76	87	108	118
		1,5 kHz	132	175	180	180	180	180
For any and the first state of the state of	1	3 kHz	119	158	180	180	180	180
	lout_max / %	6 kHz	89	121	139	155	180	180
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	51	73	87	99	120	131
		1,25 kHz	132	175	180	180	180	180
Francisco Marinalatras:	1 . 10/	2,5 kHz	125	166	180	180	180	180
	lout_max / %	5kHz	97	131	151	168	180	180
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	61	87	101	114	138	150
Tabelle 15: Frequenzabhängiger Maximalstrom	für Geräte	größe 17						

3.2.4 Verlustleistung bei Bemessungsbetrieb für 230 V-Geräte

Gerätegröße			15	16	17
Bemessungsschaltfrequenz		fs∧ / kHz	4	4	4
Verlustleistung bei Bemessungsbetrieb	1)	P _D / W	397	533	667
Tabelle 16: Verlustleistung der 230 V-Geräte					

¹⁾ Bemessungsbetrieb entspricht UN = 230 V; fsN; IN; fN = 50 Hz (typischer Wert)

3.2.5 Absicherung für 230 V-Geräte

	Max. Größe der Sicherung / A									
Geräte- größe	<i>U</i> _N = 230V gG (IEC)	<i>U</i> _N = 240V class "J"	U _N = 240V ¹⁾							
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA Typ F							
			80	SIBA 20 1xy 20.80	700Vac					
15	80	80	80	COOPER BUSSMANN 170M1xy6	700Vac					
			80	LITTELFUSE L25S080	250Vac					
			100	SIBA 20 1xy 20.100	700Vac					
16	80	90	100	COOPER BUSSMANN 170M1xy7	700Vac					
			90	LITTELFUSE L25S090	250Vac					
			125	SIBA 20 1xy 20.125	700Vac					
17	100	110	125	COOPER BUSSMANN 170M1xy8	700Vac					
			125	LITTELFUSE L25S125	250Vac					
Tabelle 1	7: Absicherungen	für 230 V / 240 V-	Geräte							

¹⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.3 Gerätedaten der 400 V-Geräte

3.3.1 Übersicht der 400V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			17	18	1	9	20
Gehäuse			3				
Ausgangsbemessungsscheinleistung		Sout / kVA	29	35	4	2	52
Max. Motorbemessungsleistung	1)	Pmot / kW	18,5	22	3	0	37
Eingangsbemessungsspannung		Un / V		40	00 (UL: 48	0)	
Eingangsspannungsbereich		Uin / V			280550		
Netzphasen					3		
Netzfrequenz		f _N / Hz			50 / 60 ±2	1	
Eingangsbemessungsstrom @ UN = 400V		Iin / A	54	59	6	6	82
Eingangsbemessungsstrom @ UN = 480V		lin_UL / A	44	48	5	7	71
Isolationswiderstand @ Udc = 500V		R iso / $M\Omega$			> 20		
Ausgangsspannung		Uout / V			0 <i>Uin</i>		
Ausgangsfrequenz	2)	fout / Hz			0599		
Ausgangsphasen					3		
Ausgangsbemessungsstrom @ UN = 400V		In / A	42 50 60 7				75
Ausgangsbemessungsstrom @ UN = 480V		IN_UL / A	34	40	5	2	65
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %			150		
Softwarestromgrenze	3)				150		
Abschaltstrom	3)	loc / %			180		
Bemessungsschaltfrequenz		fsn / kHz	2	2	2	4	2
Max. Schaltfrequenz	5)	fs_max / kHz		l .	16		
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> _D / W	375	440	525	660	670
Überlaststrom über Zeit	3)	IOL / %	"3.3.3.1 Überlastcharakteristik (OL) für 400 \ Geräte"				ir 400 V-
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	143 / 180	120 / 180	100 / 180	134 / 180	107 / 180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	93 / 180	78 / 180	65 / 180	100 / 180	80 / 180
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	36 / 153	30 / 128	25 / 107	50 / 142	40 / 114
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	15 / 67	12 / 56	10 / 47	17 / 72	14 / 58
					weite	r auf näch	ster Seite

Gerätegröße			17	18	19	20		
Gehäuse					3			
Max. Bremsstrom		IB_max / A	76					
Min. Bremswiderstandswert		RB_min / Ω	11					
Bremstransistor	6)		Max. Spieldauer: 120 s; Max. ED: 50 %					
Schutzfunktion für Bremstransistor				Kurzsch	llussüberwachung			
Schutzfunktion Bremswiderstand (Error GTR7 always on)	7)		Feedbacksignalauswertung und Stromabschalt (nur bei AC-Netzanschluss)					
Max. Motorleitungslänge geschirmt	8)	// m	100					
Tabelle 18: Übersicht der 400 V-Gerätedaten								

¹⁾ Bemessungsbetrieb entspricht $U_N = 400 \text{ V}$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten "3.3.3.1 Überlastcharakteristik (OL) für 400 V-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating "3.4.1.2 Schaltfrequenz und Temperatur der 400 V-Geräte".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.
- ⁸⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.

3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen						
Eingangsbemessungsspannung	Un / V	400				
Nominal-Netzspannung (USA)	U _{N_UL} / V	480 / 277				
Eingangsspannungsbereich	Uin / V	280550				
Netzphasen		3				
Netzfrequenz	f _N / Hz	50/60				
Netzfrequenztoleranz	f _{Nt} / Hz	± 2				
Tabelle 19: Eingangsspannungen und -frequenzen der 400 V-Geräte						

DC-Zwischenkreisspannung		
Zwischenkreis Bemessungsspannung @ UN = 400 V	U _{N_dc} / V	565
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	U _{N_UL_dc} / V	680
Zwischenkreis Arbeitsspannungsbereich	Udc / V	390780
Tabelle 20: DC-Zwischenkreisspannung für 400 V-Geräte		

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximaler Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

GERÄTEDATEN DER 400 V-GERÄTE

Ausgangsspannungen und -frequenzen							
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>Uin</i>					
Ausgangsfrequenz	2) fout / Hz	0599					
Ausgangsphasen		3					
Tabelle 21: Ausgangsspannungen und -frequenzen der 400 V-Geräte							

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel							
Netzdrossel <i>U</i> _k	4								
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Mo-							
Antriebsstromrichter geregelt	8	tordrossel an einem weichen Netz:							
Motordrossel <i>U</i> _k	1	400 V-Netzspannung (100%) - 44V reduzierte Span- nung (11 %) = 356 V-Motorspannung							
Weiches Netz	2	mang (11 70) coo t motoroparmang							
Tabelle 22: Beispiel zur Berechnung der möglichen Motorspannung für 400 V									

3.3.3 Ein- und Ausgangsströme / Überlast für 400 V-Geräte

Gerätegröße			17	18	19	20
Eingangsbemessungsstrom @ UN = 400 V	1)	lin / A	55	59	66	82
Eingangsbemessungsstrom @ UN_UL = 480 V	1)	Iin_UL / A	44	48	57	71
Eingangsbemessungsstrom DC @ UN_dc = 565 V		lin_dc / A	66	73	81	101
Eingangsbemessungsstrom DC @ UN_UL_dc = 680 V		lin_UL_dc / A	54	58	70	88
Ausgangsbemessungsstrom @ <i>U</i> _N = 400 V		In / A	42	50	60	75
Ausgangsbemessungsstrom @ UN_UL = 480 V		IN_UL / A	34	40	52	65
Ausgangsbemessungsüberlast (60s)	2)	160s / %	150	150	150	150
Überlaststrom	2)	IOL / %	=> "3.3.3.1 Überlastcharakteristi (OL) für 400 V-Geräte"			
Softwarestromgrenze	2) 3)		150	150	150	150
Abschaltstrom	2)	loc / %	180	180	180	180
Tabelle 23: Ein- und Ausgangströme der 400 V-Gerät	е					

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

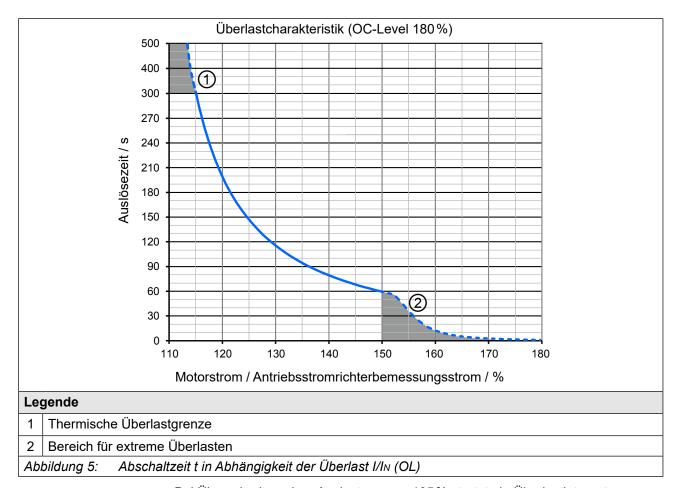
Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

3.3.3.1 Überlastcharakteristik (OL) für 400 V-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150 % für 60 s betrieben werden.


Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 5: Abschaltzeit t in Abhängigkeit der Überlast I/ IN (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.3.3.1 Überlastcharakteristik (OL) für 400 V-Geräte".

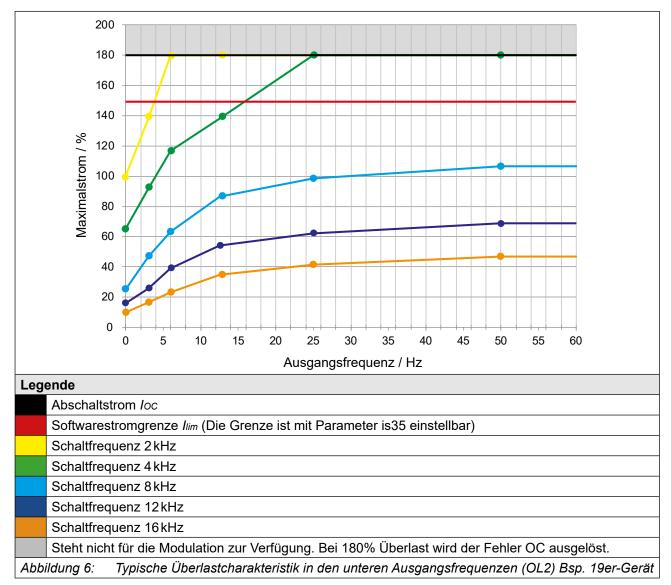
GERÄTEDATEN DER 400 V-GERÄTE

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann der Integrator nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) für 400 V-Geräte

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: Bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgende Kennlinie gibt den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 12,5 Hz, 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 19 (mit 2 kHz Bemessungsschaltfrequenz) dargestellt.

Der frequenzabhängige Maximalstrom l_{out_max} / % bezieht sich prozentual auf den Ausgangsbemessungsstrom l_N .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße						17						
Bemessungsschaltfrequenz					2 k	Hz						
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50				
		2kHz	143	180	180	180	180	180				
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	93	131	167	180	180	180				
Basic Time Period = 62,5 µs (Parameter is22=0)	Iout_max i /o	8 kHz	36	67	91	124	141	153				
Basic Time Feriou – 02,5 μs (Farameter 1522–0)		16kHz	15	24	34	50	60	67				
		1,75 kHz	143	180	180	180	180	180				
Evaguanzahhängigar Mayimalatram @ fa	lout_max % - -	3,5 kHz	106	148	180	180	180	180				
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 µs (Parameter is 22=1)		7 kHz	50	83	110	147	166	179				
Basic Time Feriou = 71,4μs (Farameter 1822=1)		14 kHz	18	30	44	64	74	83				
	,	1,5 kHz	143	180	180	180	180	180				
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	118	165	180	180	180	180				
Basic Time Period = 83,3 µs (Parameter is22=2)	Iout_max I 70	6 kHz	65	99	129	170	180	180				
Basic Time Period – 65,5 µs (Parameter 1822–2)		12kHz	22	36	55	77	89	98				
		1,25 kHz	143	180	180	180	180	180				
Francisco Marina datua ma Of	1.0/	2,5 kHz	131	180	180	180	180	180				
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	79	115	148	180	180	180				
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	29	52	73	100	115	125				
Tabelle 24: Frequenzabhängiger Maximalstron	n für Geräte	größe 17										

Gerätegröße			18						
Bemessungsschaltfrequenz					2 k	Hz			
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50	
		2kHz	120	166	180	180	180	180	
Fraguenzahhängiger Meyimeletrem @ fe	1 . 10/	4 kHz	78	110	140	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8kHz	30	56	76	104	118	128	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	12	20	28	42	50	56	
		1,75 kHz	120	166	180	180	180	180	
Francisco Marino datua m @ f	Iout_max / % -	3,5 kHz	89	124	159	180	180	180	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	42	70	92	123	139	150	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	15	25	37	53	62	69	
		1,5 kHz	120	166	180	180	180	180	
	1 . 10/	3kHz	99	138	178	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	54	83	108	142	160	172	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	18	30	46	64	74	82	
		1,25 kHz	120	166	180	180	180	180	
Francisco Marino datua m. O fa	1	2,5kHz	110	152	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	66	97	124	161	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	24	43	61	84	96	105	
Tabelle 25: Frequenzabhängiger Maximalstron	n für Geräte	größe 18							

Gerätegröße			19						
Bemessungsschaltfrequenz					2 k	Hz			
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50	
		2kHz	100	139	180	180	180	180	
Eraguanzahhängigar Mavimalatram @ fa	lout_max / %	4 kHz	65	92	117	150	169	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)		8 kHz	25	47	64	87	99	107	
basic Time Feriou – 62,5 μs (Farameter is22–0)		16 kHz	10	17	24	35	42	47	
		1,75 kHz	100	139	180	180	180	180	
Eraguanzahhängigar Mavimalatram @ fa	lout_max / %	3,5 kHz	74	104	133	165	180	180	
Frequenzabhängiger Maximalstrom @ fs		7kHz	35	58	77	103	116	125	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	13	21	31	45	52	58	
		1,5 kHz	100	139	180	180	180	180	
	1	3kHz	83	115	149	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	45	70	90	119	134	144	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	15	25	39	54	62	69	
		1,25 kHz	100	139	180	180	180	180	
	1	2,5 kHz	92	127	165	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	55	81	104	135	151	162	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	20	36	51	70	80	88	
Tabelle 26: Frequenzabhängiger Maximalstron	n für Geräte	größe 19 (21	(Hz)						

GERÄTEDATEN DER 400 V-GERÄTE

Gerätegröße			19						
Bemessungsschaltfrequenz					4 k	Hz			
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50	
		2kHz	134	180	180	180	180	180	
Fraguenzahhängiger Mayimalatrom @ fa	1 1 0/.	4 kHz	100	140	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	50	75	100	117	134	142	
Basic Time Period = 62,5 µs (Parameter is22=0)	•	16kHz	17	32	47	59	65	72	
		1,75 kHz	134	180	180	180	180	180	
Evaguanzahhängigar Mayimalatram @ fa	Iout_max / % -	3,5 kHz	109	152	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	63	92	120	138	155	163	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	23	40	57	70	79	86	
		1,5 kHz	134	180	180	180	180	180	
Fraguenzahhängiger Mevimeletrom @ fe	1 1 0/2	3kHz	117	164	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max / %	6 kHz	75	108	140	159	175	180	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12kHz	29	47	67	80	92	100	
		1,25 kHz	134	180	180	180	180	180	
Evaguanzahhängigar Mayimalatus za 🖨 fa	1 , 10/	2,5 kHz	125	175	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	88	124	160	180	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	40	61	84	99	113	121	
Tabelle 27: Frequenzabhängiger Maximalstron	n für Geräte	größe 19 (41	(Hz)						

Gerätegröße			20						
Bemessungsschaltfrequenz					2 k	Hz			
Ausgangsfrequenz		fout / Hz	0	3	6	12,5	25	50	
		2kHz	107	150	180	180	180	180	
Fraguenzahhängiger Mevimeletrem @ fe	1 . / 0/	4 kHz	80	112	144	160	174	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	40	60	80	94	107	114	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	14	26	38	47	52	58	
		1,75 kHz	107	150	180	180	180	180	
Fraguanzahhängigar Maximaletrom @ fc	Iout_max / % -	3,5 kHz	87	122	155	174	180	180	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	50	73	96	110	124	130	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	18	32	46	56	63	69	
		1,5 kHz	107	150	180	180	180	180	
Fraguenzahhängiger Mevimeletrem @ fe	1 . / 0/	3 kHz	94	131	166	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6 kHz	60	86	112	127	140	147	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	23	38	54	64	74	80	
		1,25 kHz	107	150	180	180	180	180	
	1 . /0/	2,5 kHz	100	140	176	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	70	99	128	144	157	164	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	32	49	67	79	90	97	
Tabelle 28: Frequenzabhängiger Maximalstron	n für Geräte	größe 20							

3.3.4 Übersicht der Gleichrichterdaten

Gerätegröße			17	18	19	20
Gleichrichterbemessungsleistung		Prect / kW	21	25	34	41
Gleichrichterdauerleistung 1) Pred		Prect_cont / kW	41	41	41	41
Eingangsdauerstrom @ Un = 400 V	1)	lin_cont / A	82	82	82	82
Eingangsdauerstrom @ Un_uL = 480 V	1)	Iin_UL_cont / A	71	71	71	71
Ausgangsbemessungsstrom DC @ UN_dc = 565V		lout_dc / A	66	73	81	101
Ausgangsdauerstrom DC @ Un_dc = 565 V	1)	lout_dc_cont / A	101	101	101	101
Ausgangsbemessungsstrom DC @ UN_UL_dc = 680V		lout_UL_dc / A	54	58	70	88
Ausgangsdauerstrom DC @ Un_UL_dc = 680 V	1)	lout_UL_dc_cont / A	88	88	88	88
Tabelle 29: Übersicht der Gleichrichterdaten						

¹⁾ Der Dauerbetrieb ist eine Belastung über den Bemessungsbetrieb hinaus. Der Dauerbetrieb tritt nur auf, wenn der interne Gleichrichter verwendet wird, um weitere Antriebsstromrichter über die DC-Klemmen zu versorgen => "5.3.6 DC-Verbund". Im Dauerbetrieb kann abhängig von den Betriebsbedingungen des internen Wechselrichters der OH-Fehler ausgelöst werden.

GERÄTEDATEN DER 400 V-GERÄTE

3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte

Gerätegröße			17	18	1	9	20
Bemessungsschaltfrequenz		fsn / kHz	2	2	2	4	2
Verlustleistung bei Bemessungsbetrieb	1)	P _D / W	375	440	525	660	670
Verlustleistung bei Bemessungsbetrieb DC	2)	P _{D_dc} / W	300	355	425	565	520
Tabelle 30: Verlustleistung der 400 V-Geräte							

¹⁾ Bemessungsbetrieb entspricht Un = 400 V; fsn; In; fn = 50 Hz (typischer Wert)

3.3.6 Absicherung für 400V-Geräte

3.3.6.1 Absicherung bei AC-Versorgung

		Max. G	Größe der Siche	rung / A		
Geräte- größe	U _N = 400 V gG (IEC)	<i>U</i> _N = 480 V class "J"		<i>U</i> N = 480 V ¹⁾		
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA	Тур		
			50	SIBA 20 1xy 20.50		
17	63	45	50	COOPER BUSSMANN 170M1xy4		
			50	LITTELFUSE L70QS050		
			50	SIBA 20 1xy 20.50		
18	80	60	50	COOPER BUSSMANN 170M1xy4		
					50	LITTELFUSE L70QS050
			80	SIBA 10 1xy 20.80		
19	80	70	80	COOPER BUSSMANN 170M1xy6		
			70	LITTELFUSE L70QS070		
			100	SIBA 21 1xy 20.100		
20	100	90	100	COOPER BUSSMANN 170M1xy7		
			90	LITTELFUSE L70QS090		
Tabelle 3	1: Absicherungen fü	ir 400 V / 480 V-Gerá	ite			

¹⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

²⁾ Bemessungsbetrieb DC entspricht U_{N_dc} = 565 V; (typischer Wert)

3.3.6.2 Absicherung der 400 V-Geräte bei DC-Versorgung

Geräte-	Empfohlene Sicher		7
größe	<i>U</i> и_dc = 565V	<i>U</i> N_dc = 680V	Zulässige Sicherungen 1)
	SCCR 50 kA	SCCR 50 kA	
17	90	80	SIBA 50 250 06.80
18	100	90	SIBA 20 209 37.100 ²⁾ SIBA 50 280 06.100 SIBA 50 268 06.125
19	125	100	SIBA 20 031 34.125 Bussmann FWP-100A22F Bussmann 170M1420
20	150	125	Littelfuse L70QS200
Tabelle 32:	DC-Absicherungen fü	r 400 V / 480 V-Geräte	

¹⁾ Sicherungen des gleichen Typs mit geringeren Bemessungsströmen können verwendet werden, wenn sie für die Anwendung geeignet sind.

ACHTUNG

Bemessungsspannung der Sicherung beachten!

▶ Die Bemessungsspannung der Sicherung muss mindestens der maximalen DC-Versorgungsspannung des Antriebsstromrichters entsprechen.

²⁾ Sicherung ohne UL-Zertifizierung

GERÄTEDATEN DER 400 V-GERÄTE

3.3.6.3 Motorschutzschalter / Leistungsschalter

In diesem Kapitel sind die empfohlenen sowie alternativen Motorschutzschalter/Leistungsschalter für den Schutz des Antriebsstromrichters aufgeführt. Die Auswahl der empfohlenen Schutzschalter basiert auf einem Dauerbetrieb (S1-Betrieb) bei 100% Auslastung und maximaler Umgebungstemperatur. Bei abweichenden Betriebsbedingungen ist die Dimensionierung der Schutzschalter anzupassen (s. Herstellerdokumentation der jeweiligen Schutzschalter).

	Empfohlene Motorschutzschalter / Leistungsschalter										
Geräte-	II	EC (<i>U</i> _N = 400V	')		UL (<i>U</i> _N _ <i>u</i>	L = 480V)					
größe	Тур	Bemes- sungs- strom / A	SCCR @ Un / kA	Тур	Bemes- sungs- strom / A	Bemes- sungsleis- tung / hp	SCCR @ Un_ul / kA				
17	Eaton PKZM4-58	58	30	Eaton PKZM4-50	50	30	30				
18	Eaton PKZM4-63	65	30	Eaton PKZM4-50	50	30	30				
19	Siemens 3RV2032- 4KA10	73	30	Eaton PKZM4-58	58	40	30				
20	Siemens 3RV2042- 4RA10	84	30	Siemens 3RV2032- 4KA10	73	60	30				

Alternativ zu den empfohlenen Motorschutzschaltern/Leistungsschaltern dürfen alle in der folgenden Tabelle aufgeführten Schutzschalter eingesetzt werden. Schutzschalter des gleichen Typs mit niedrigerem Bemessungsstrom oder anderen Ausstattungsmerkmalen (z.B. Anschlussklemmen, Betätigungsarten, usw.) dürfen ebenfalls verwendet werden, sofern sie für die Anwendung geeignet sind und die abweichenden Merkmale keine verschlechternden Auswirkungen auf die Durchlasswerte (I²t und Ip) haben. Schutzschalter desselben Typs mit geringerem Ausschaltvermögen können verwendet werden, sofern sie für die Anwendung geeignet sind. In diesem Fall reduziert sich der das Short Circuit Current Rating (SCCR) der Kombination aus Antriebsstromrichter und Schutzschalter auf das Ausschaltvermögen des Schutzschalters.

Einige Motorschutzschalter erfordern zusätzliches Zubehör, um in UL-zertifizierten Installationen als Type E Combination Motor Controller eingesetzt werden zu können (s. Herstellerdokumentation des jeweiligen Schutzschalters).

Alternat	Alternative Motorschutzschalter / Leistungsschalter									
IEC (U _N = 400V)										
Typ Bemessungsstrom / A Bemessungsleistung / hp SCCR @ Un /										
Eaton PKZM4-63	65	40	30							
Siemens 3RV2032-4KA10	73	60	30							
Siemens 3RV2042-4YA10	93	75	30							
Schneider GV3P65	65	40	30							
Siemens 3VA5110-6ED31-0AA0	100	-	30							
Schneider BJL36100	100	-	30							
Tabelle 34: Alternative Motorschu	ıtzschalter / Leistungsscha	alter für 400 V / 480 V-Geräte								

Nur IEC:

Hier nicht aufgelistete Motorschutzschalter / Leistungsschalter können verwendet werden, sofern sie folgende Anforderungen erfüllen:

- Durchlassintegral I²t @ UN < 470kA²s
- Durchlassstrom Ip @ UN < 17kA

3.4 Allgemeine elektrische Daten

3.4.1 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (TDR), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur die Schwelle TUR wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur TEM wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.4.1.1 Schaltfrequenz und Temperatur der 230 V-Geräte

Gerätegröße			15	16	17			
Bemessungsschaltfrequenz	1)	fsn / kHz	4	4	4			
Max. Schaltfrequenz	1)	fs_max / kHz	16					
Min. Schaltfrequenz	1)	fs_min / kHz	2					
Max. Kühlkörpertemperatur		Ths / °C	85					
Temperatur zur Schaltfrequenzreduzierung		T _{DR} / °C	75					
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	65					
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °C	80					
Tabelle 35: Schaltfrequenz und Temperatur der 230 V-Geräte								

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.4.1.2 Schaltfrequenz und Temperatur der 400 V-Geräte

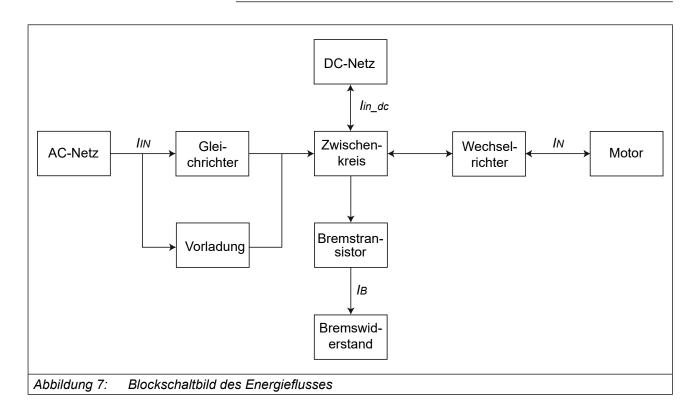
Gerätegröße			17	18	1	9	20
Bemessungsschaltfrequenz	1)	<i>f</i> s⊬ / kHz	2	2	2	4	2
Max. Schaltfrequenz	1)	fs_max / kHz		16			
Min. Schaltfrequenz	1) fs_min / kHz 2						
Max. Kühlkörpertemperatur		Ths / °C	85				
Temperatur zur Schaltfrequenzreduzierung		T _{DR} / °C			75		
Temperatur zur Schaltfrequenzerhöhung		Tur / °C			65		
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °С			80		
Tabelle 36: Schaltfrequenz und Temperatur der 400 V-Geräte							

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.4.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion.

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichters!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

- ▶ Bei Auftreten des Fehlers "ERROR GTR7 always ON" ist der Antriebsstromrichter defekt und muss spätestens nach 16 Stunden spannungsfrei geschaltet werden!
- ▶ Bei DC-Netzanschluss und der Verwendung von nicht-eigensicheren Bremswiderständen oder Unterbaubremswiderständen muss der Antriebsstromrichter spätestens nach 1 Sekunde spannungsfrei geschaltet werden.

ALLGEMEINE ELEKTRISCHE DATEN

3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte

Gerätegröße			15	16	17
Zwischenkreis Bemessungsspannung @ UN = 230 V		UN_dc / V	325		
Zwischenkreis Bemessungsspannung @ Un_uL = 240 V		UN_dc_UL / V		339	
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V		240373	
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V		216	
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	400		
DC-Schaltpegel Bremstransistor	1)	U _B / V	380		
Max. Bremsstrom		IB_max / A	76		
Min. Bremswiderstandswert		RB_min / Ω	6		
Bremstransistor	2)		Max. Spieldauer: 120 s; Max. ED: 50 %		
Schutzfunktion für Bremstransistor			Kurzso	hlussüberw	achung
Schutzfunktion Bremswiderstand			Feedbacksignalauswertung und		
(Error GTR7 always on)	3)		Stromabschaltung		ıng
Zwischenkreiskapazität		Cint / µF	5040 6160 7280		
Tabelle 37: DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte					

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte

Gerätegröße			17	18	19	20
Zwischenkreis Bemessungsspannung @ Un = 400 V		U _{N_dc} / V	565			
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V		UN_dc_UL / V			30	
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V		390.	780	
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V		24	10	
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V		84	10	
DC-Schaltpegel Bremstransistor	1)	U _B / V		78	30	
Max. Bremsstrom		IB_max / A	76			
Min. Bremswiderstandswert		R_{B_min} / Ω	11			
Bremstransistor	2)		Max. Spieldauer: 120s; Max. ED: 50%		20s;	
Schutzfunktion für Bremstransistor			Kurzschlussüberwachung			
Schutzfunktion Bremswiderstand (Error GTR7 always on)	3)		Feedbacksignalauswertung und Stromabschaltung (nur bei AC-Anschluss)			
Zwischenkreiskapazität		Cint / µF	1400 1680 2240 2800		2800	
Max. vorladbare Gesamtkapazität @ Un = 400 V	4)	C _{pc_max} / µF	oc_max / μF 2300 2300 2300 3100		3100	
Max. vorladbare Gesamtkapazität @ Un_uL = 480 V	Cpc_max_UL / µF	2300	2300	2300	3100	
Tabelle 38: DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte						

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.

⁴⁾ Bei verkürzter Vorladezeit kann nur die interne Zwischenkreiskapazität vorgeladen werden => F6 Programmierhandbuch.

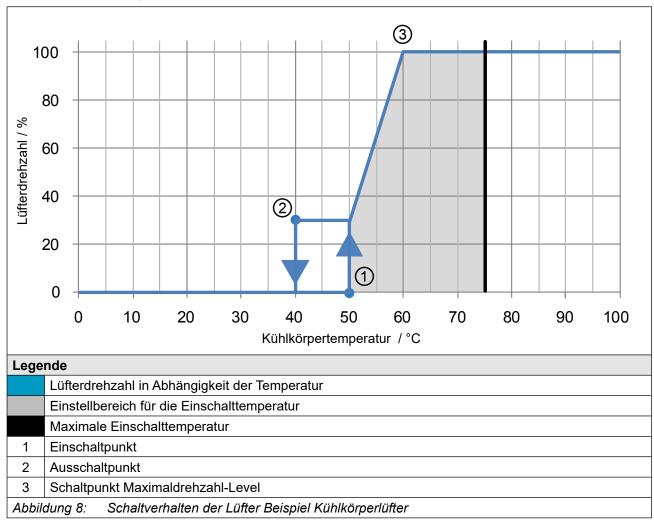
ALLGEMEINE ELEKTRISCHE DATEN

3.4.3 Lüfter

Gerätegröße		15 16 17 18 19				20	
Innenraumlüfter	Anzahl	1					
Innenraumunter	Drehzahlvariabel	nein					
Mahili ann a miath an	Anzahl	1					
Kühlkörperlüfter	Drehzahlvariabel	ja					
Tabelle 39: Lüfter							

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG

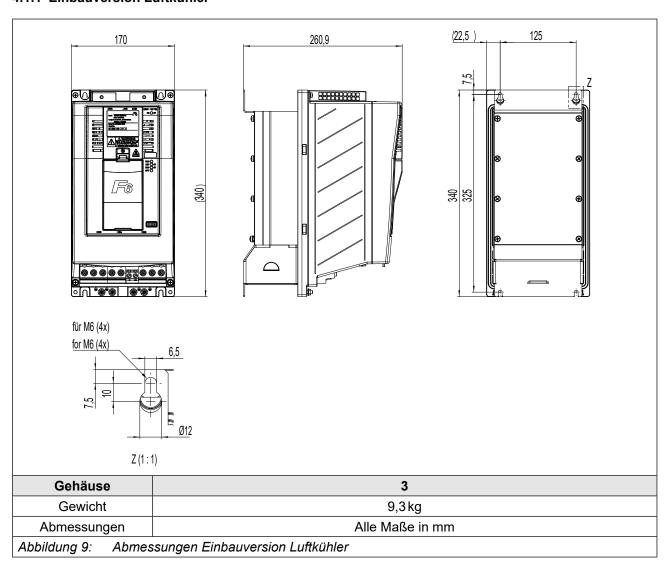

Zerstörung der Lüfter!

Es dürfen keine Fremdkörper in die Lüfter eindringen!

3.4.3.1 Schaltverhalten der Lüfter

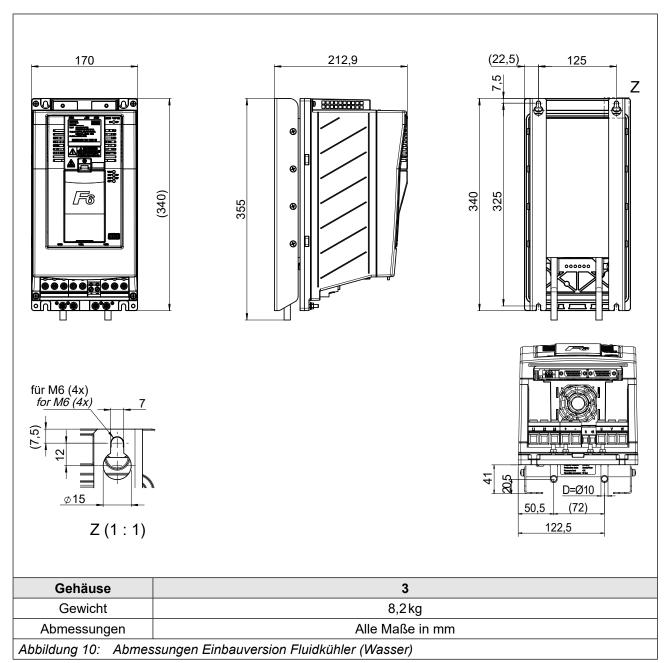
Die Temperaturüberwachung steuert die Lüfter mit verschiedenen Ein- und Ausschaltpunkten.

3.4.3.2 Schaltpunkte der Lüfter

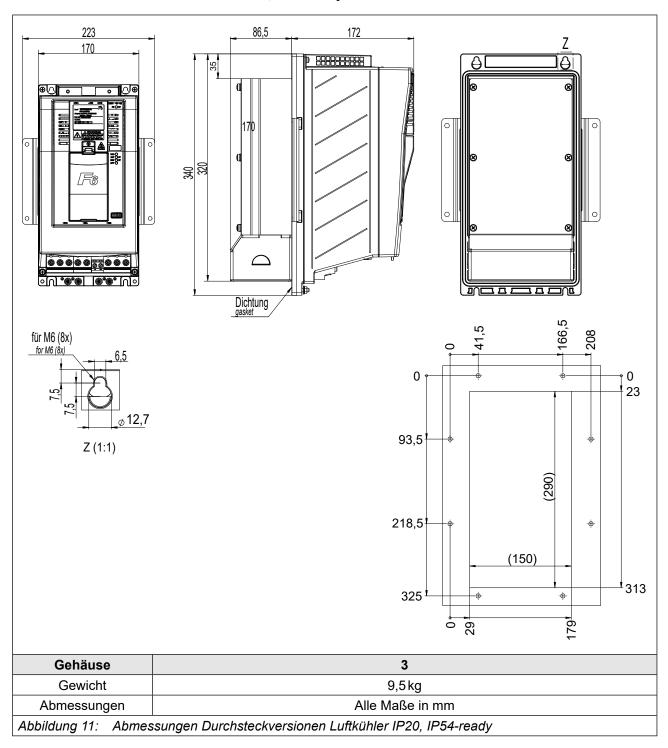

Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.

Lüfter		Kühlkörper	Innenraum		
Einschalttemperatur	T/°C	50	45		
Maximaldrehzahl-Level T/°C		60	55		
Tabelle 40: Schaltpunkte der Lüfter					

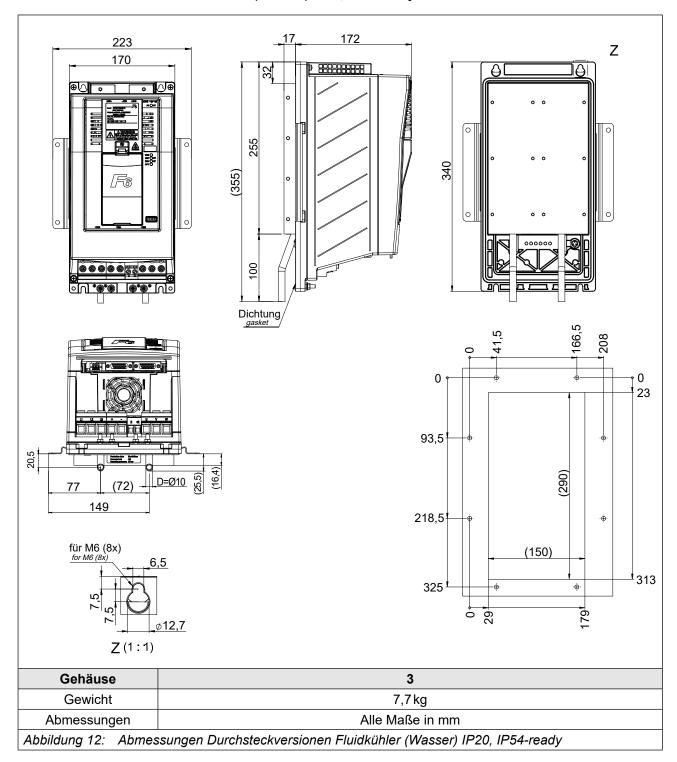
4 Einbau


4.1 Abmessungen und Gewichte

4.1.1 Einbauversion Luftkühler



4.1.2 Einbauversion Fluidkühler (Wasser)


ABMESSUNGEN UND GEWICHTE

4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready

4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready

4.2 Schaltschrankeinbau

4.2.1 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment
Sachakantashrauha ISO 1017 MG 0 0	9Nm
Sechskantschraube ISO 4017 - M6 - 8.8	80 lb inch
Flache Scheibe ISO 7090 - 6 - 200 HV	_
Tabelle 41: Befestigungshinweise für Einbauversion	

Benötigtes Material	Anzugsdrehmoment
Sachakantashrauha ISO 4017 MG 0.0	9Nm
Sechskantschraube ISO 4017 - M6 - 8.8	80 lb inch
Flache Scheibe ISO 7090 - 6 - 200 HV	_
Tabelle 42: Befestigungshinweise für Durchsteckversion	

ACHTUNG

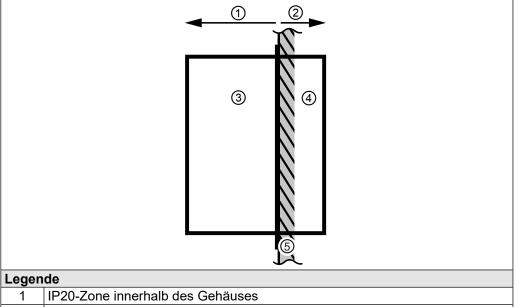
Verwendung von anderem Befestigungsmaterial

➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

4.2.2 Einbauabstände

Verlustleistung zur Schaltschrankauslegung "3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte". Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.



Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb, muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.

Einbauabstände	Maß	Abstand in mm	Abstand in inch	
	Α	150	6	
ÎA E	В	100	4	
	С	30	1,2	
	D	0	0	
	Е	0	0	
	F 1)	50	2	
F B	Abstand zu vorgelagerten Bedienelementen in Schaltschranktür.			
Abbildung 13: Einbauabstände	•			

4.2.3 Montage von IP54-ready Geräten

Legen	nde				
1	IP20-Zone innerhalb des Gehäuses				
2	IP54-Zone außerhalb des Gehäuses				
3	Antriebsstromrichter (Leistungsteil und Steuerung)				
4	Antriebsstromrichter (Kühlkörper)				
5	Gehäuse (z.B. Schaltschrankwand)				
Abbild	Abbildung 14: Montage von IP54-ready Geräten				

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.4.2 Dichtung für IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

Bei luftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzulässig.

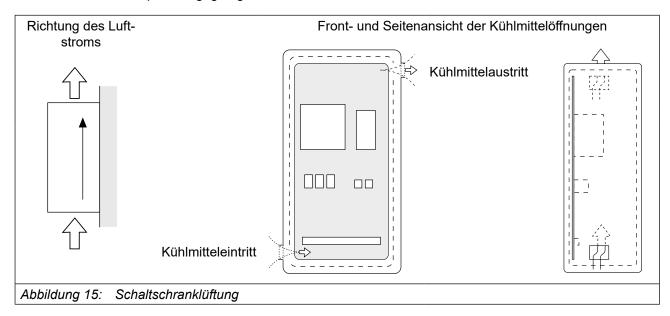
UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

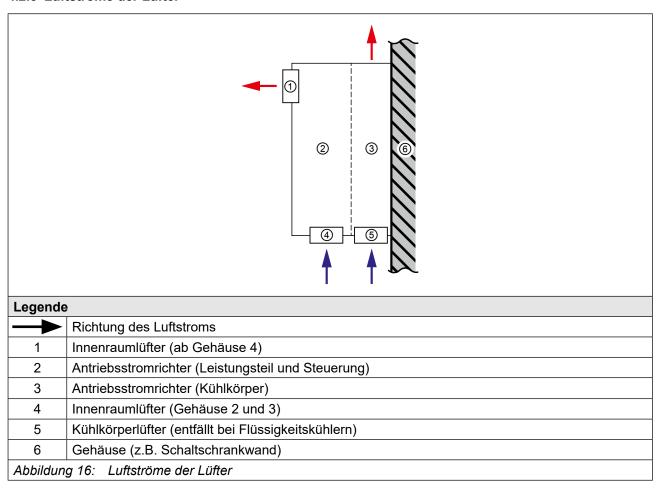
Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".

ACHTUNG

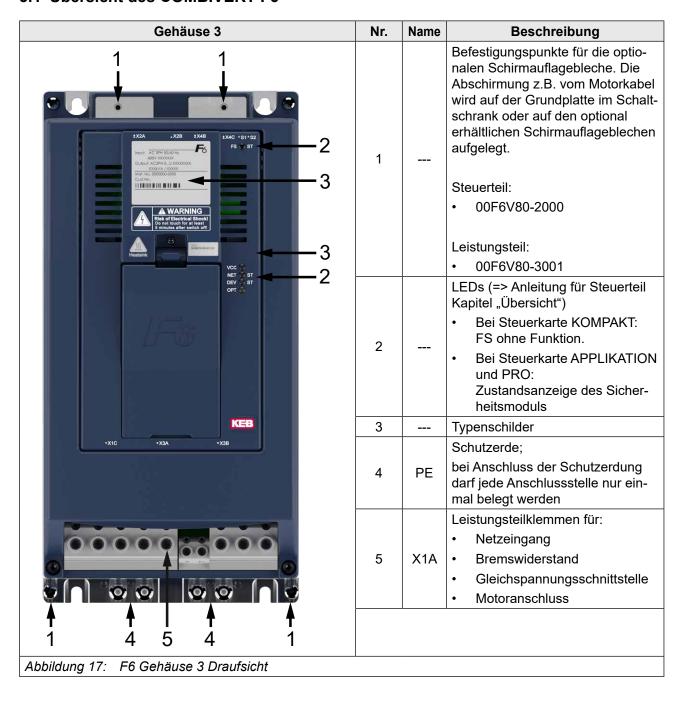

Defekt durch dauerhaftes Spritzwasser!

▶ Das Gerät niemals dauerhaftem Spritzwasser (z.B. direkte Regeneinwirkung) aussetzen!



4.2.4 Schaltschranklüftung

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.



4.2.5 Luftströme der Lüfter

5 Installation und Anschluss

5.1 Übersicht des COMBIVERT F6

Gehäuse 3	Nr.	Name	Beschreibung
6 7 8	1		Befestigungspunkte für die optionalen Schirmauflagebleche. Die Abschirmung z.B. vom Motorkabel wird auf der Grundplatte im Schaltschrank oder auf den optional erhältlichen Schirmauflageblechen aufgelegt. Leistungsteil: 00F6V80-3001
L1 L2 L3 + - R R+ U V W	4	PE	Schutzerde; bei Anschluss der Schutzerdung darf jede Anschlussstelle nur ein- mal belegt werden
	5	X1A	Leistungsteilklemmen für: Netzeingang Bremswiderstand Gleichspannungsschnittstelle Motoranschluss
	6	X1C	Klemme für:MotortemperaturüberwachungBremsenansteuerung
	7	ХЗА	Geberschnittstelle Kanal A
	8	ХЗВ	Geberschnittstelle Kanal B
	9		Innenraumlüfter
1 1 1 1 1 1	10		Kühlkörperlüfter
1 7 10 7 1			
Abbildung 18: F6 Gehäuse 3 Vorderansicht			

Nr.	Name	Beschreibung			
11	S1	Drehkodierschalter A			
12	S2	Drehkodierschalter B			
13	X4C	Feldbusschnittstelle (out)			
14	X4B	Feldbusschnittstelle (in)			
15	X2B	Sicherheitsmodul			
16	X2A	 Steuerklemmleiste für CAN-Bus Analoge Eingänge und analoger Ausgang Digitale Ein- und Ausgänge 24V-Gleichspannungsversorgung 			

Abbildung 19: F6 Gehäuse 3 Rückansicht mit Steuerkarte APPLIKATION

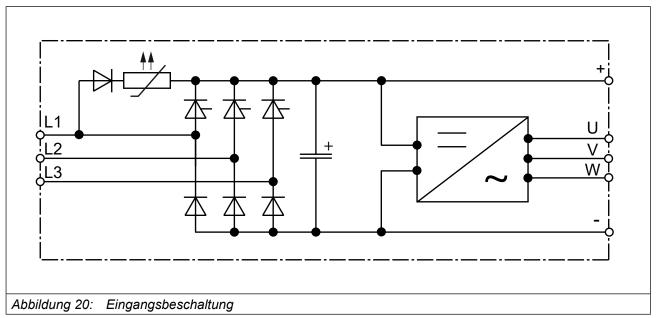
Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils


ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

Der COMBIVERT F6 Gehäuse 3 kann über die Klemmen L1, L2 und L3 (AC-Spannungsversorgung) oder über die Klemmen + und - (DC-Spannungsversorgung mit Einschaltstrombegrenzung) versorgt werden

ACHTUNG

Bei AC-Spannungsversorgung minimale Wartezeit zwischen zwei Einschaltvorgängen beachten!

Zyklisches Aus- und Einschalten des Antriebsstromrichters führt zu temporärer Hochohmigkeit des PTC-Vorladewiderstandes. Nach Abkühlung des PTC-Vorladewiderstandes ist eine erneute Inbetriebnahme ohne Einschränkung möglich. Die Wartezeit zwischen zwei Einschaltvorgängen ist von der externen Kapazität, der AC-Netzspannung und der Umgebungstemperatur abhängig.

- ► Ohne externe Kapazität: 5 min
- ▶ Mit externer Kapazität (weitere Antriebsstromrichter): 5 min

ACHTUNG

Keine Einschaltstrombegrenzung bei DC-Spannungsversorgung!

▶ Bei DC-Spannungsversorgung muss eine externe Einschaltstrombegrenzung vorgesehen werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.1.1 Klemmleiste X1A

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter		
L1	Netzanschluss	Flexible Leitung mit Aderendhülse				
L2	3-phasig	0,535 mm²				
L3	5-phasig	Bei 2 Leitern max. 6mm²	2,54,5 Nm			
+			2340 lb inch			
-	DC-Klemmen	UL: Flexible Leitung ohne Aderendhülse AWG 202				
		Flexible Leitung mit Aderendhülse		Für IEC: 2		
R	A 11 6" D	0,516 mm²				
	Anschluss für Brems- widerstand (zwischen	Bei 2 Leitern max. 6mm²	1,21,5 Nm	Für UL: 1		
	R und +R)		1113 lb inch			
+R	,	UL: Flexible Leitung ohne Aderendhülse AWG 206				
U			0:-11/1			
V	Motoranschluss	Siehe Klemmen L1, L2, L3	Siehe Klemmen L1, L2, L3			
W			L 1, LZ, L3			
Abbildung	Abbildung 21: Klemmleiste X1A					

74

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

Elektrischer Schlag durch Falschdimensionierung!

▶ Erdungsquerschnitt ist entsprechend *VDE 0100* zu wählen!

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment
PE,	Anschluss für Schutzerde	5 mm Gewindestift für M5 Kabelschuhe	68 Nm 5370 lb inch
Abbildung 22:	Anschluss für Schutzerde		

Fehlerhafte Montage des PE-Anschlusses

Als Anschluss für die Schutzerde dürfen nur die M5-Gewindestifte mit Mutter verwendet werden!

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

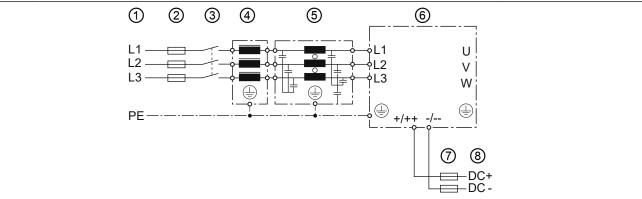
Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

Die Funktionserde darf nicht grün/gelb verdrahtet werden!

5.3 Netzanschluss

5.3.1 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:


- Eingangsstrom des Antriebsstromrichters
- Verwendeter Leitungstyp
- Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektrovorschriften

Der Projektierer ist für die Auslegung verantwortlich.

5.3.2 AC-Netzanschluss

5.3.2.1 AC-Versorgung 3-phasig

Nr.	Тур	Beschreibung			
	Netzphasen	3-phasig			
		TN, TT	IT		
1	Netzform	Die Bemessungsspannung zwischen einem Außenle tial (bzw. dem Sternpunkt im IT - Netz) darf USA UL: 480 / 277 V betragen	maximal 300 V,		
		(Beim IT - Netz muss eine kurzfristige Abschaltung	g sichergestellt sein).		
	Personenschutz	RCMA mit Trenner oder RCD Typ B	Isolationswächter		
2	Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".			
3	Netzschütz	-			
4	Netzdrossel	Siehe Hinweise im Kapitel "Filter und Drosseln".			
5	HF-Filter für TN-, TT-Netze	Zur Einhaltung der Grenzwerte gemäß <i>EN 61800-3</i> erforderlich.			
	HF-Filter für IT-Netze				
6	Antriebsstromrichter	COMBIVERT F6			
7	DC-Sicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".			
8	DC-Versorgung	Vom Antriebsstromrichter erzeugte DC-Versorgung zum Anschluss weiterer Antriebsstromrichter => "5.3.6 DC-Verbund"			
Abbildung 23: Anschluss der Netzversorgung 3-phasig					

76

5.3.2.2 Hinweis zu harten Netzen

Bei Antriebsstromrichtern mit Spannungszwischenkreis hängt die Lebensdauer von der Höhe der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden.

Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (S_{Net}) des Netzes im Vergleich zur Ausgangsbemessungsscheinleistung des Antriebsstromrichters (S_{out}) sehr groß ist (>>200).

$$k = \frac{S_{Net}}{S_{out}} >> 200$$

z.B.

$$k = \frac{2 \text{ MVA (Versorgungstrafo)}}{42 \text{ kVA (19F6)}} = 48 \longrightarrow \text{Keine Drossel notwendig}$$

Eine Auflistung von Filtern und Drosseln => "5.4.1 Filter und Drosseln".

5.3.3 DC-Netzanschluss

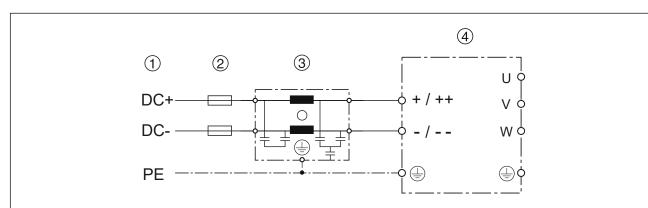
ACHTUNG

DC-Betrieb

▶ Die DC-Spannungsversorgung von 230V-Geräten ist nur nach Rücksprache mit KEB zulässig!

5.3.3.1 Klemmleiste X1A DC-Anschluss

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter	
+		Flexible Leitung mit Aderendhülse 0,535 mm²		F0- IFC. 2	
	DC-Klemmen	Bei 2 Leitern max. 6mm²	2,54,5 Nm	Für IEC: 2	
-		UL: Flexible Leitung ohne Aderendhülse AWG 202	2340 lb inch	Für UL: 1	
Abbildung	Abbildung 24: Klemmleiste X1A DC-Anschluss				

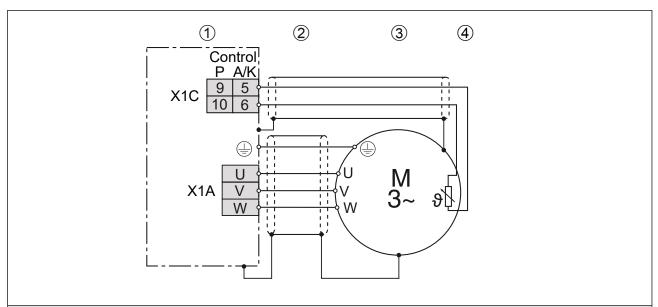


5.3.3.2 DC-Versorgung

ACHTUNG

Zerstörung des Antriebsstromrichters!

► Niemals "+ / ++" und "- / --" vertauschen!



Nr.	Тур	Beschreibung			
1	DC-Versorgung	2-phasig			
2	DC-Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung DC-Versorgung".			
3	HF-Filter	Zur Einhaltung der Grenzwerte gemäß EN 61800-3 erforderlich.			
4	Antriebsstromrichter	COMBIVERT F6			

Abbildung 25: Anschluss der DC-Netzversorgung

5.3.4 Anschluss des Motors

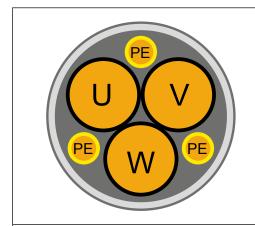
5.3.4.1 Verdrahtung des Motors


Legende

- 1 KEB COMBIVERT
- Motorleitung, Schirm beidseitig und großflächig auf den metallisch blanken Rahmen oder die Montageplatte auflegen (ggf. Lack entfernen)
- 3 Drehstrommotor
- 4 | Temperaturüberwachung (optional) => Gebrauchsanleitung "Steuerteil"

Abbildung 26: Verdrahtung des Motors

5.3.4.2 Klemmleiste X1A Motoranschluss



Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter			
U		Flexible Leitung mit Aderendhülse 0,535 mm²		Für IEC: 2			
V	Motoranschluss	Bei 2 Leitern max. 6mm²	2,54,5 Nm 2340 lb inch	Für UL: 1			
W		UL: Flexible Leitung ohne Aderendhülse AWG 202		Ful OL. I			
Abbildung	Abbildung 27: Klemmleiste X1A Motoranschluss						

5.3.4.3 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Empfehlung: Phase/Phase <65 pF/m, Phase/Schirm <120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen => "5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung"
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 28: Symmetrische Motorleitung

5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters).

Durch den Einsatz von Motordrosseln oder Motorfiltern lässt sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 25 m. Ab 100 m wird der Einsatz erforderlich.

Weitere Informationen zur Motorleitungslänge sind der entsprechenden Filteranleitung zu entnehmen.

5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.3.4.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt)
- vom realen Effektivwert des Motorstroms
- von der Leitungslänge
- vom Typ der verwendeten Leitung
- von Umgebungsbedingungen wie Bündelung und Temperatur

5.3.4.7 Verschaltung des Motors

ACHTUNG

Fehlerhaftes Verhalten des Motors!

► Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen dU/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein dU/dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

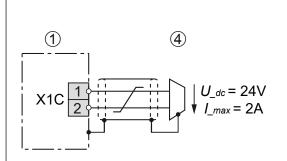
Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte => Gebrauchsanleitung "Steuerteil".

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn12 = 7) deaktiviert werden => Programmierhandbuch.

X1C	PIN	Name	Beschreibung			
	1	BR+	Bremsenansteuerung / Ausgang +			
	2	BR-	Bremsenansteuerung / Ausgang -			
	3	reserviert	_			
2 4 6	4	reserviert	_			
	5	TA1	Temperaturerfassung / Ausgang +			
	6	TA2	Temperaturerfassung / Ausgang -			
1 3 5						
Abbildung 29: Klemmleiste	Abbildung 29: Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT					

X1C	PIN	Name	Beschreibung	
	1	BR+	Bremsenansteuerung / Ausgang +	
	2	BR-	Bremsenansteuerung / Ausgang -	
	3	0V	Zur Vergergung der Bückmeldegingenge	
	4	24Vout	Zur Versorgung der Rückmeldeeingänge	
2 4 6 8 10	5	DIBR1	Rückmeldeeingang 1 für Bremse oder Relais	
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais	
	7	reserviert	_	
	8	reserviert	_	
	9	TA1	Temperaturerfassung / Eingang +	
	10	TA2	Temperaturerfassung / Eingang -	
Abbildung 30: Klemmleiste X1C für Steuerkarte PRO				


ACHTUNG

Störungen durch falsche Leitungen oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

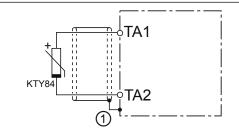
- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ▶ Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.

Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.


Spezifikation in der jeweiligen

=> Gebrauchsanleitung "Steuerteil" beachten.

1 COMBIVERT

4 Bremse

Abbildung 31: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 32: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten.

5.3.5 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

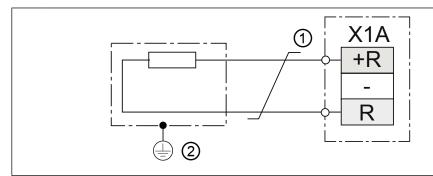
► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.3 Gerätedaten der 400 V-Geräte"

A VORSICHT

Heiße Oberflächen durch Belastung des Bremswiderstands!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.


5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
R	Anschluss für Bremswiderstand	Flexible Leitung mit Aderendhülse 0,516 mm² Bei 2 Leitern max. 6mm²	1,21,5 Nm	Für IEC: 2
+R	(zwischen R und +R)	UL: Flexible Leitung ohne Aderendhülse AWG 206	1113lb inch	Für UL: 1

Abbildung 33: Klemmleiste X1A Anschluss Bremswiderstand

5.3.5.2 Verwendung eigensicherer Bremswiderstände

Legende

- Anschlusskabel verdrillen. Bei Verlängerung der Anschlusskabel zusätzlich schirmen und Schirm beidseitig auflegen.
- 2 Die Schutzerdung erfolgt über das Gehäuse.

Abbildung 34: Verdrahtung eines eigensicheren Bremswiderstands

Eigensichere Bremswiderstände verhalten sich im Fehlerfall wie eine Schmelzsicherung. Sie unterbrechen sich ohne Brandgefahr.

Weitere Hinweise zu eigensicheren Bremswiderständen www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

5.3.5.3 Verwendung nicht eigensicherer Bremswiderstände

A WARNUNG

Verwendung nicht eigensicherer Bremswiderstände

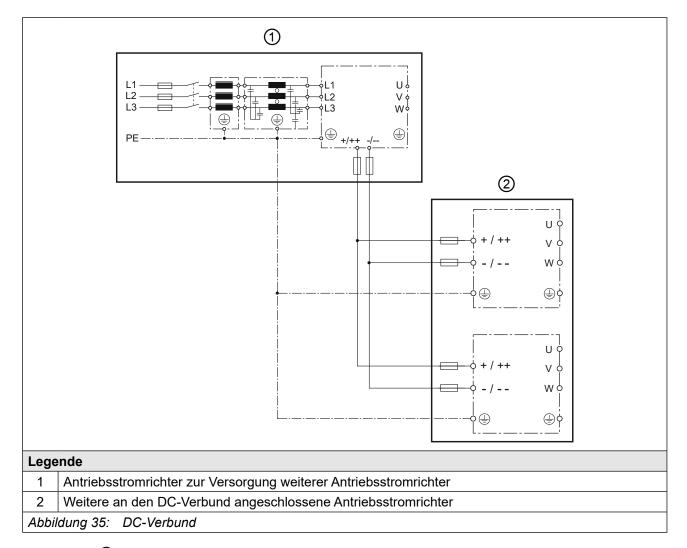
Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ► Nur Bremswiderstände mit Temperatursensor verwenden.
- ► Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände
- > => Gebrauchsanleitung "Installation Bremswiderstände"

Gebrauchsanleitung "Installation Bremswiderstände" => Gebrauchsanleitung "Installation Bremswiderstände"

5.3.6 DC-Verbund

In einem DC-Verbund werden die Zwischenkreise mehrerer Antriebsstromrichter gekoppelt. Der Energieaustausch wird so untereinander ermöglicht und die Energieeffizienz der Anwendung wird erhöht.


Dieser Antriebsstromrichter kann als Teil eines DC-Verbundes entweder über die DC-Klemmen versorgt werden => "5.3.3 DC-Netzanschluss" oder über die DC-Klemmen weitere Antriebsstromrichter versorgen => "5.3.2 AC-Netzanschluss".

KEB hat die Vielzahl der möglichen DC-Verbunde nicht gegen die EMV-Produktnorm DIN EN IEC 61800-3 getestet. Die CE-Konformität des DC-Verbundes liegt im Verantwortungsbereich des Anwenders.

Folgende zusätzliche Sicherheitshinweise müssen bei der Verwendung dieses Antriebsstromrichters in einem DC-Verbund beachtet werden:

- Dieser Antriebsstromrichter darf ausschließlich zusammen mit anderen F6 und S6 Antriebsstromrichtern der 400V-Klasse im DC-Verbund betrieben werden.
- Dieser Antriebsstromrichter muss in einem Gehäuse verbaut sein.
- Dieser Antriebsstromrichter muss an den DC-Klemmen mit Sicherungen geschützt werden => "3.3.6.2 Absicherung bei DC-Versorgung".
- Nach Auslösung einer Sicherung im DC-Verbund, infolge eines Kurzschlusses, sollten aufgrund der Gefahr einer Vorschädigung alle Sicherungen im DC-Verbund ausgetauscht werden.
- Die Parametrierung der Eingangsphasenausfallerkennung muss angepasst werden => F6 Programmierhandbuch.

<u>1 Bei Verwendung dieses Antriebsstromrichters zur Versorgung weiterer Antriebsstromrichter über die DC-Klemmen muss zusätzlich folgendes beachtet werden:</u>

- Die max. vorladbare Gesamtkapazität (interne Kapazität + externe Kapazität) darf nicht überschritten werden => "Tabelle 36: DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte".
- Die min. Wartezeit zwischen zwei Vorladevorgängen muss eingehalten werden => "5.2.1 Anschluss der Spannungsversorgung".
- Während der Vorladung dürfen über die DC-Klemmen versorgte Antriebsstromrichter nicht belastet werden.
- Die Überlastung des Gleichrichters muss durch den Anwender verhindert werden => "3.3.4 Übersicht der Gleichrichterdaten".

② Bei Versorgung dieses Antriebsstromrichters über die DC-Klemmen muss zusätzlich folgendes beachtet werden:

 Die Vorladung des Antriebsstromrichters muss durch den versorgenden Antriebsstromrichter oder ein externes Vorlademodul erfolgen.

5.4 Zubehör

5.4.1 Filter und Drosseln

Spannungsklasse	Antriebsstromrichter- größe	HF-Filter	Netzdrossel 50 Hz / 4% Uk		
	15	20E6T60-3000	15Z1B03-1000		
230 V	16	20E6T60-3000	16Z1B03-1000		
	17	20E6T60-3000	17Z1B03-1000		
Tabelle 43: Filter und Drosseln für 230 V-Geräte					

18E6T60-1050 18E6T60-3000 18E6T60-3050 18E6T60-1050	17Z1B04-1000
18E6T60-3050	17Z1B04-1000
18E6T60-1050	
18E6T60-3000	18Z1B04-1000
18E6T60-3050	
20E6T60-1050	
20E6T60-3000	19Z1B04-1000
18E6T60-3050	
20E6T60-1050	
20E6T60-3000	20Z1B04-1000
1	
	18E6T60-3050 20E6T60-1050

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.4.2 Dichtung für IP54-ready Geräte

Bezeichnung	Materialnummer
Dichtung IP54	30F6T45-0004
Tabelle 45: Dichtung für IP54-ready Geräte	

5.4.3 Anbausatz Schirmauflagebleche

Bezeichnung	Materialnummer
Anbausatz Schirmauflageblech Steuerteil	00F6V80-2000
Anbausatz Schirmauflageblech Leistungsteil	00F6V80-3001
Tabelle 46: Anbausatz Schirmauflageblech	

5.4.4 Nebenbaubremswiderstände

Technische Daten und Auslegung zu eigensicheren Bremswiderständen

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf$

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

6 Betrieb von flüssigkeitsgekühlten Geräten

6.1 Wassergekühlte Geräte

Bei Applikationen in denen prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten KEB COMBIVERT Antriebsstromrichtern an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

6.1.1 Kühlkörper und Betriebsdruck

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper mit Edelstahlrohren	Edelstahl 1.4404	10 bar	=> "6.1.4 Anschluss des Kühlsystems"

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

6.1.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material gebildetes Ion		Normpotenzial	
Lithium	Li+	-3,04 V	Nickel	Nickel Ni2+		
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V	
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V	
Natrium	Na+	-2,71V Eisen		Fe3+	-0,037 V	
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00V	
Titan	Ti2+	-1,75V	Edelstahl (1.4404)	diverse	0,20,4 V	
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V	
Mangan	Mn2+	-1,05 V	Kohlenstoff	C2+	0,74 V	
Zink	Zn2+	-0,76 V	Silber	Ag+	0,80 V	
			•	weiter	auf nächster Seite	

WASSERGEKÜHLTE GERÄTE

Material	gebildetes Ion	Normpotenzial	Material	gebildetes Ion	Normpotenzial
Chrom	Cr3+	-0,71 V	Platin	Pt2+	1,20 V
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V
Cobald	Co2+	-0,28V			
Tabelle 47: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff					

6.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

Generelle Anforderungen an das Kühlmittel:

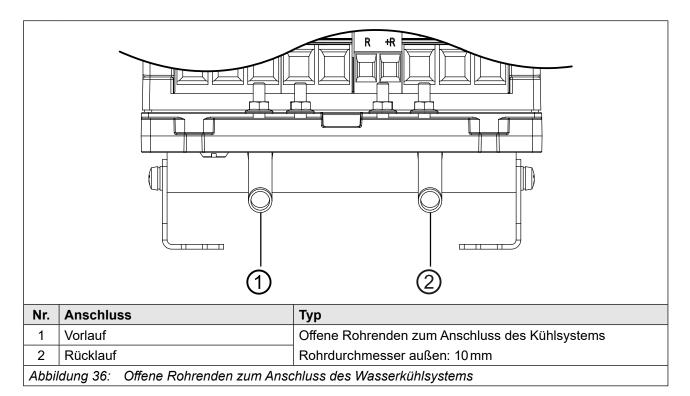
Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB S 455 P</i>
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB S 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 48: Anforderu	ngen an das Kühlmittel

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung			
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.			
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.			
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.			
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.			
Tabelle 49: Besondere	Tabelle 49: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen			

Verlust der Garantieansprüche!

Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.


6.1.4 Anschluss des Kühlsystems

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potenzialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

=> "6.1.2 Materialien im Kühlkreislauf"

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Zum Anschluss des Kühlsystems empfiehlt KEB den Einsatz von Funktionsmuttern z.B. des Herstellers "Parker", Typ FMxxL71 (xx = Rohrdurchmesser).

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

6.1.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.1.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Jegliche Betauung vermeiden.

6.1.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90
Umgebungs-									
temperatur / °C									
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6
0	-26	-19	-14	-11	-8	-6	-4	-3	-2
5	-23	-15	-11	-7	-5	-2	0	2	3
10	-19	-11	-7	-3	0	1	4	6	8
15	-18	-7	-3	1	4	7	9	11	13
20	-12	-4	1	5	9	12	14	16	18
25	-8	0	5	10	13	16	19	21	23
30	-6	3	10	14	18	21	24	26	28
35	-2	8	14	18	22	25	28	31	33
40	1	11	18	22	27	31	33	36	38
45	4	15	22	27	32	36	38	41	43
	Kühlmitteleintrittstemperatur / °C								
Tabelle 50: Taupunkttabelle									

Tabelle 50: Taupunkttabelle

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren.
- ► Kühlkreislauf mit Druckluft ausblasen.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

▶ Nur NC-Ventile verwenden.

6.1.6 Zulässiger Volumenstrom bei Wasserkühlung

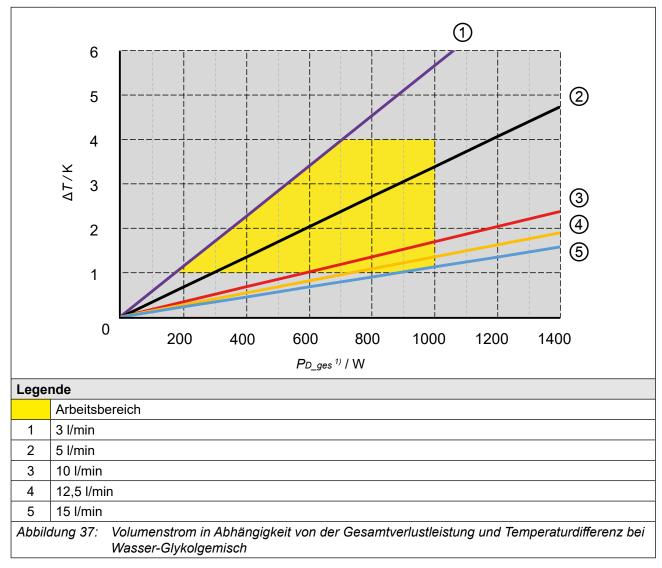
Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstro	m	
Min. Volumenstrom	Q_min / I/min	3
Max. Volumenstrom	Q_max / I/min	15
Tabelle 51: Zulässiger V	olumenstrom bei Was	sserkühlung

Der minimale Volumenstrom ist abhängig von der Gesamtverlustleistung.

=> "6.1.7 Kühlmittelerwärmung"

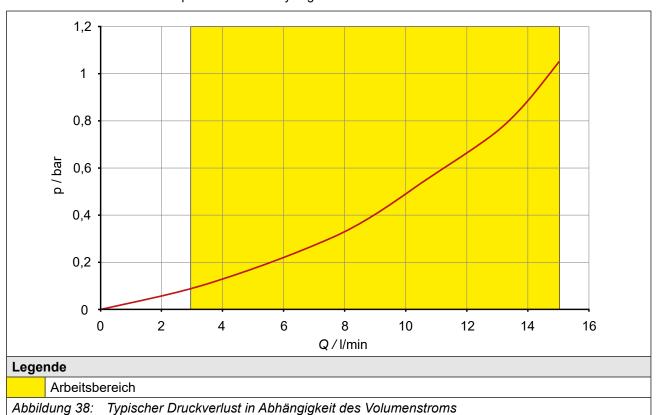
ACHTUNG


Zerstörung des Kühlkörpers durch Erosion!

▶ Der maximal zulässige Volumenstrom darf nicht überschritten werden.

6.1.7 Kühlmittelerwärmung

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.



¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

WASSERGEKÜHLTE GERÄTE

6.1.8 Typischer Druckverlust des Kühlkörpers

- Der unten dargestellte Kurvenverlauf gilt für 25 °C Vorlauftemperatur und einem Glykolanteil von 52 %.
- Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

100

7 Zertifizierung

7.1 CE-Kennzeichnung

Die mit einem CE-Logo gekennzeichneten Antriebsstromrichter halten die Anforderungen, die durch die Maschinenrichtlinie sowie die EMV- und Rohs-Richtlinie und Energieeffizienzregulierung ein.

Für weitere Informationen zu den CE-Konformitätserklärungen

=> "7.3 Weitere Informationen und Dokumentation"

7.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

UL file number E167544

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

- Maximum Surrounding Air Temperature: 45°C
- Use 75°C Copper Conductors Only
- All 480V ac / 3-ph Models:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 1xy 20.zz or by Bussmann, Type 170M1xyz or Littelfuse, Type L70QSzzz, see instruction manual for Branch Circuit Protection details.

Note: "z", "zz" or "zzz" replace the current rating for the respective type of fuse. "x" may represents different indicators and "y" may represents different fuse connection version.

When DC supplied:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 50000 Amperes, 680 Volts DC Maximum when protected by Semiconductor Fuses as Specified in the Manual.

All 200-240V ac / 3-ph Models:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 240 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, 240 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 1xy 20.zz or by Bussmann, Type 170M1xyz or Littelfuse, Type L25S zzz, see instruction manual for Branch Circuit Protection details.

CSA: For Canada, this marking shall be provided on the device or on a separate label shipped with the device. Note: "z", "zz" or "zzz" replace the current rating for the respective type of fuse. "x" may represents different indicators and "y" may represents different fuse connection versions.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I.

- Control Circuit Overcurrent Protection Required
- WARNING The opening of the branch circuit protective device may be an
 indication that a fault current has been interrupted. To reduce the risk of fire or
 electrical shock, current-carrying parts and other components of the controller
 should be examined and replaced if damaged. If burnout of the current element of
 an overload relay occurs, the complete overload relay must be replaced.
- All 480V ac / 3-ph Models:

Only for use in non-corner grounded type WYE source not exceeding 277 V phase to ground

All 200-240V ac / 3-ph Models:

Only for use in non-corner grounded type WYE source not exceeding 139 V phase to ground

- Brake resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time / 60 sec off-time
- The required external control voltage supply shall be marked to indicate a 24Vdc supply voltage.
- For Use in a Pollution Degree 2 environment.

For installations according to Canadian National Standard C22.2 No. 274-13: For use in Pollution Degree 2 and Overvoltage Category III environments only.

7.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb-automation.com/de/suche

Allgemeine Anleitungen

- EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- Eingangssicherungen gemäß UL
- · Programmierhandbuch für Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Weitere hier nicht aufgeführte Kennzeichnungen und Abnahmen werden, sofern zutreffend, durch ein entsprechendes Logo auf dem Typenschild oder Gerät gekennzeichnet. Die zugehörigen Nachweise / Zertifikate stehen Ihnen auf unserer Website zur Verfügung.

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

8 Änderungshistorie

Version	Datum	Beschreibung
00	2017-12	Erstellung der Vorserienversion
01	2019-04	Fertigstellung der Serienversion
02	2020-02	Redaktionelle Änderungen
03	2021-09	Aufnahme der 230V- und Fluidgekühlte (Wasser) Geräte
04	2023-04	Diagramm der Kühlmittelerwärmung angepasst, Typenschlüssel angepasst, Redaktionelle Änderungen
05	2024-05	Aufnahme der DC-Ready Geräte
06	2025-02	Redaktionelle Änderungen, DC-Ready Anschluss korrigiert, Glossar, Normen aktualisiert. Zeichnung für den Fluidkühler (Wasser) als Einbauversion aktualisiert.
07	2025-11	Aufnahme der Motorschutzschalter

NOTIZEN

WEITERE KEB PARTNER WELTWEIT:

www.keb-automation.com/de/contact

Automation **mit Drive**

www.keb-automation.com

KEB Automation KG Südstraße 38 D-32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de