

KEB

COMBIVERT F6

INSTRUCTIONS FOR USE | **INSTALLATION F6 HOUSING 8**

Translation of the original manual
Document 20120983 EN 10

Preface

The hardware and software described in this document are products of KEB. The information contained in this document is valid at the time of publishing. KEB reserves the right to update this document in response to misprints, mistakes or technical changes.

Signal words and symbols

Certain procedures within this document can cause safety hazards during the installation or operation of the device. Refer to the safety warnings in this document when performing these procedures. Safety signs are also located on the device where applicable. A safety warning is marked by one of the following warning signs:

DANGER

Dangerous situation, which will cause death or serious injury if this safety warning is ignored.

WARNING

Dangerous situation, which may cause death or serious injury if this safety warning is ignored.

CAUTION

Dangerous situation, which may cause minor injury if this safety warning is ignored.

NOTICE

Situation, which can cause damage to property if this safety warning is ignored.

RESTRICTION

Used when the following statements depend on certain conditions or are only valid for certain ranges of values.

Used for informational messages or recommended procedures.

More symbols

- This arrow starts an action step.
- / - Enumerations are marked with dots or indents.
- => Cross reference to another chapter or another page.

Note to further documentation.

<https://www.keb-automation.com/search>

Laws and guidelines

KEB Automation KG confirms with the EC declaration of conformity and the CE mark on the device nameplate that it complies with the essential safety requirements.

The EC declaration of conformity can be downloaded on demand via our website.

Warranty and liability

The warranty and liability on design, material or workmanship for the acquired device is given in the general sales conditions.

Here you will find our general sales conditions.

<https://www.keb-automation.com/terms-conditions>

Further agreements or specifications require a written confirmation.

Support

Although multiple applications are referenced, not every case has been taking into account. If you require further information or if problems occur which are not referenced in the documentation, you can request the necessary information via the local KEB agency.

The use of our units in the target products is outside of our control and therefore lies exclusively in the area of responsibility of the customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the intended use. However, they are regarded as being only informal and changes are expressly reserved, in particular due to technical changes. This also applies to any violation of industrial property rights of a third-party. Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done within the intended end use of the product (application) by the customer. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

Copyright

The customer may use the instructions for use as well as further documents or parts from it for internal purposes. Copyrights are with KEB and remain valid in its entirety.

This KEB product or parts thereof may contain third-party software, including free and/or open source software. If applicable, the license terms of this software are contained in the instructions for use. The instructions for use are already available to you, can be downloaded free of charge from the KEB website or can be requested from the respective KEB contact person.

Other wordmarks or/and logos are trademarks (™) or registered trademarks (®) of their respective owners.

Table of Contents

Preface	3
Signal words and symbols	3
More symbols.....	3
Laws and guidelines.....	4
Warranty and liability.....	4
Support	4
Copyright.....	4
Table of Contents	5
1 Basic Safety Instructions.....	9
1.1 Target group.....	9
1.2 Transport, storage and proper use	9
1.3 Installation.....	10
1.4 Electrical connection	11
1.4.1 EMC-compatible installation.....	12
1.4.2 Voltage test.....	12
1.4.3 Insulation measurement.....	12
1.5 Start-up and operation.....	13
1.6 Maintenance.....	14
1.7 Repair	15
1.8 Disposal.....	16
2 Product Description	17
2.1 Specified application.....	17
2.1.1 Residual risks	17
2.2 Unintended use.....	17
2.3 Product features	18
2.4 Part code	19
2.5 Nameplate	21
2.5.1 Configurable options	22
3 Technical data	23
3.1 Operating conditions	23
3.1.1 Climatic environmental conditions.....	23
3.1.2 Mechanical environmental conditions	24
3.1.3 Further environmental operating conditions	24
3.1.4 Electrical operating conditions.....	24
3.1.4.1 Device classification	24
3.1.4.2 Electromagnetic compatibility.....	25
3.2 Device data of the 400V devices.....	26
3.2.1 Overview of 400 V devices.....	26

TABLE OF CONTENTS

3.2.2 Voltage and frequencies for 400V devices	28
3.2.2.1 Example of the calculation of the possible motor voltage:	28
3.2.3 Input and output currents/ overload.....	29
3.2.3.1 Overload characteristic (OL)	30
3.2.3.2 Frequency-dependent maximum current (OL2)	32
3.2.4 Overview of rectifier data for 400 V devices.....	39
3.2.5 Power dissipation at rated operation for 400 V devices	39
3.2.6 Fusing for 400V devices.....	40
3.2.6.1 Fuse protection for AC supply	40
3.2.6.2 Fusing for DC supply.....	41
3.3 General electrical data	42
3.3.1 Switching frequency and temperature.....	42
3.3.1.1 Switching frequencies and temperatures for air coolers	42
3.3.1.2 Switching frequencies and temperatures for fluid coolers (water).....	43
3.3.2 DC link / braking transistor function.....	44
3.3.2.1 DC link / braking transistor function.....	45
3.3.3 Sub-mounted braking resistors	46
3.3.4 Fan	47
3.3.4.1 Switching behaviour of the fans	48
3.3.4.2 Switching points of the fans.....	48
4 Installation.....	49
4.1 Dimensions and weights	49
4.1.1 Built-in version air cooler	49
4.1.2 Built-in version fluid cooler (water)	50
4.1.3 Push-through version air cooler IP20, IP54-ready	51
4.1.4 Push-through version fluid cooler (water) IP20, IP54-ready.....	52
4.2 Control cabinet installation	53
4.2.1 Control cabinet installation	53
4.2.2 Devices with transport bracket	53
4.2.3 Mounting instructions	54
4.2.4 Mounting distances	55
4.2.5 Installation of IP54-ready devices	57
4.2.6 Control cabinet ventilation	58
4.2.7 Airflow of the drive controller	58
5 Installation and connection	59
5.1 Overview of the COMBIVERT F6.....	59
5.2 Connection of the power unit.....	62
5.2.1 Connection of the voltage supply	62
5.2.1.1 Terminal block X1A for 400 V devices	63
5.2.2 Protective earth and function earth	64

5.2.2.1 Protective earth	64
5.2.2.2 Functional earthing	64
5.3 Mains connection	65
5.3.1 Supply cable	65
5.3.2 AC mains connection	65
5.3.2.1 AC supply 3-phase	65
5.3.2.3 DC mains connection	66
5.3.3.1 Terminal block X1A DC connection	66
5.3.3.2 Connection at DC voltage supply	67
5.3.4 Connection of the motor	68
5.3.4.1 Wiring of the motor	68
5.3.4.2 Terminal block X1A motor connection	69
5.3.4.3 Selection of the motor line	70
5.3.4.4 Motor cable length and conducted interferences at AC supply	70
5.3.4.5 Motor cable length for parallel operation of motors	71
5.3.4.6 Motor cable cross-section	71
5.3.4.7 Interconnection of the motor	71
5.3.4.8 Connection of the temperature monitoring and brake control (X1C)	72
5.3.5 Connection and use of a braking resistor	74
5.3.5.1 Terminal block X1A connection braking resistor	75
5.3.5.2 Use of non-intrinsically safe braking resistors	76
5.3.6 DC-bus connection	77
5.3.7 External heat sink fan supply (FAN)	79
5.4 Accessories	81
5.4.1 Filters and chokes	81
5.4.2 Seal for IP54-ready devices	81
5.4.3 Side-mounted braking resistors	81
6 Operation of Liquid-Cooled Devices.....	82
6.1 Water-cooled devices.....	82
6.1.1 Heat sink and operating pressure	82
6.1.2 Materials in the cooling circuit	82
6.1.3 Requirements for the coolant	83
6.1.4 Connection of the cooling system	85
6.1.5 Coolant temperature and moisture condensation	86
6.1.5.1 Condensation	86
6.1.5.2 Supply of temper coolant	86
6.1.6 Permissible volume flow with water cooling	87
6.1.7 Coolant heating	88
6.1.8 Typical pressure drop of the heat sink	89

TABLE OF CONTENTS

7 Approvals and certifications	90
7.1 CE marking.....	90
7.2 UL certification	91
7.3 Further informations and documentation.....	94
8 Revision history.....	95
Glossary	96
List of Figures.....	98
List of Tables.....	99

1 Basic Safety Instructions

The products are designed and constructed in accordance with state-of-the-art technology and the recognized safety rules and regulations. However, the use of such devices may cause functional hazards for life and limb of the user or third parties, or damages to the system and other material property.

The following safety instructions have been created by the manufacturer for the area of electric drive technology. They can be supplemented by local, country- or application-specific safety instructions. This list is not exhaustive. Violation of the safety instructions by the customer, user or other third party leads to the loss of all resulting claims against the manufacturer.

NOTICE

Hazards and risks through ignorance!

- ▶ Read the instructions for use!
- ▶ Observe the safety and warning instructions!
- ▶ If anything is unclear, please contact KEB Automation KG!

1.1 Target group

This instruction manual is determined exclusively for electrical personnel. Electrical personnel for the purpose of this instruction manual must have the following qualifications:

- Knowledge and understanding of the safety instructions.
- Skills for installation and assembly.
- Start-up and operation of the product.
- Understanding of the function in the used machine.
- Detection of hazards and risks of the electrical drive technology.
- Knowledge of [VDE 0100](#)
- Knowledge of national safety regulations.

1.2 Transport, storage and proper use

The transport is carried out by qualified persons in accordance with the environmental conditions specified in this manual. Drive controller shall be protected against excessive strains.

Transport of drive controllers with an edge length >75 cm

The transport by forklift without suitable tools can cause a deflection of the heat sink. This leads to premature aging or destruction of internal components.

- ▶ Transport of drive controllers on suitable pallets.
- ▶ Do not stack drive controllers or burden them with other heavy objects.

NOTICE

Damage to the coolant connections

Bending of the tubes!

- ▶ Never place the device on the coolant connections

BASIC SAFETY INSTRUCTIONS

Drive controllers contain electrostatic sensitive components.

- ▶ Avoid contact.
- ▶ Wear ESD-protective clothing.

Do not store drive controllers

- in the environment of aggressive and/or conductive liquids or gases.
- with direct sunlight.
- outside the specified environmental conditions.

1.3 Installation

⚠ DANGER

Do not operate in an explosive environment!

- ▶ The product is not intended for the use in potentially explosive environment.

⚠ CAUTION

Design-related edges and high weight!

Contusions and bruises!

- ▶ Never stand under suspended loads.
- ▶ Wear safety shoes.
- ▶ Secure drive controller accordingly when using lifting gear.

To prevent damages to the device:

- Make sure that no components are bent and/or isolation distances are changed.
- The device must not be put into operation in case of mechanical defects.
- Do not allow moisture or mist to penetrate the unit.
- Avoid dust permeating the device. Allow for sufficient heat dissipation if installed in a dust-proof housing.
- Note installation position and minimum distances to surrounding elements. Do not cover the ventilation openings.
- Mount the drive controller according to the specified degree of protection.
- Make sure that no small parts fall into the product during assembly and wiring (drilling chips, screws etc.). This also applies to mechanical components, which can lose small parts during operation.
- Check the reliable fit of the device connections in order to avoid contact resistances and sparking.
- Do not walk-on drive controller.
- Follow all safety instructions!

1.4 Electrical connection

DANGER

Voltage at the terminals and in the device!

Danger to life due to electric shock !

- ▶ Never work on the open device or never touch exposed parts.
- ▶ For any work on the unit switch off the supply voltage, secure it against switching on and check absence of voltage by measuring at the input terminals.
- ▶ Wait until all drives has been stopped in order that no regenerative energy can be generated.
- ▶ Await capacitor discharge time (5 minutes). Check absence of voltage by measuring at the DC terminals.
- ▶ If personal protection is required, install suitable protective devices for drive converters.
- ▶ Never bridge upstream protective devices (even for testing purposes).
- ▶ Connect the protective earth conductor always to drive converter and motor.
- ▶ Install all required covers and protective devices for operation.
- ▶ The control cabinet shall be kept closed during operation.
- ▶ Residual current: This product may cause a dc current in the protective earth conductor. When a residual current protective device (RCD) or a residual current monitoring device (RCM) is used for the protection against direct or indirect contact, only a RCD or RCM type B is permitted on the power supply side of this product.
- ▶ Drive converters with a leakage current > 3.5 mA AC current (10 mA DC current) are intended for a stationary connection. Protective earth conductors must be designed in accordance with the local regulations for equipment with high leakage currents according to [EN 61800-5-1](#), [EN 60204-1](#) or [VDE 0100](#).

If personnel protection is required during installation of the system, suitable protective devices must be used for drive controllers.

www.keb.de/fileadmin/media/Techinfo/dr/tn/tn_dr_tn-rcd-00008_en.pdf

Installations which include drive controller shall be equipped with additional control and protective devices in accordance with the relevant applicable safety requirements, e.g. act respecting technical equipment, accident prevention rules etc. They must always be complied with, also for drive controller bearing a CE marking.

BASIC SAFETY INSTRUCTIONS

For a trouble-free and safe operation, please pay attention to the following instructions:

- The electrical installation shall be carried out in accordance with the relevant requirements.
- Cable cross-sections and fuses must be dimensioned by the user according to the specified minimum/maximum values for the application.
- Connection of the drive converter is only permissible on symmetrical networks with a maximum line voltage (L1, L2, L3) with respect to earth (N/PE) of max. 300 V, USA UL: 480 / 277 V. An isolating transformer must be used for supply networks which exceed this value! In case of non-compliance the control is not longer considered to be a PELV circuit.
- With existing or newly wired circuits the person installing the units or machines must ensure that the PELV requirements are met.
- For drive converters that are not isolated from the supply circuit (in accordance with [EN 60721-3-2](#)) all control lines must be included in other protective measures (e.g. double insulation or shielded, earthed and insulated).
- When using components without isolated inputs/outputs, it is necessary that equipotential bonding exists between the components to be connected (e.g. by the equipotential line). Disregard can cause destruction of the components by equalizing currents.

1.4.1 EMC-compatible installation

Observance of the limit values required by EMC law is the responsibility of the customer.

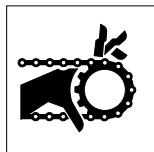
Notes on EMC-compatible installation can be found here.
www.keb.de/fileadmin/media/Manuals/dr/emv/0000neb0000.pdf

1.4.2 Voltage test

Testing with AC voltage (in accordance with [EN 60204-1](#) chapter 18.4) may not be executed, since there is danger for the power semiconductors in the drive controller.

Due to the radio interference suppression capacitors, the test generator will switch off immediately with a current fault.

According to [EN 60204-1](#) it is permissible to disconnect already tested components. Drive controllers of the KEB Automation KG are delivered ex works voltage tested to 100% according to product standard.


1.4.3 Insulation measurement

An insulation measurement (in accordance with [EN 60204-1](#) chapter 18.3) with DC 500 V is permissible, if all power unit connections (grid-connected potential) and all control connections are bridged with PE. The insulation resistance of the respective device can be found in the technical data.

1.5 Start-up and operation

The start-up (i.e. for the specified application) is forbidden until it is determined that the installation complies with the machine directive; account is to be taken of [EN 60204-1](#).

⚠ WARNING

Software protection and programming!

Hazards caused by unintentional behavior of the drive!

- ▶ Check especially during initial start-up or replacement of the drive controller if parameterization is compatible to application.
- ▶ Securing a unit solely with software-supported functions is not sufficient. It is imperative to install external protective measures (e.g. limit switch) that are independent of the drive controller.
- ▶ Secure motors against automatic restart.

⚠ CAUTION

High temperatures at heat sink and coolant!

Burning of the skin!

- ▶ Cover hot surfaces safe-to-touch.
- ▶ If necessary, attach warning signs on the system.
- ▶ Before touching, check the surface and coolant lines.
- ▶ Before working let the unit cool down.

- During operation, all covers and doors shall be kept closed.
- Use only approved accessories for this device.
- Never touch terminals, busbars or cable ends.

⚠ CAUTION

High sound level during operation!

Hearing damage possible!

- ▶ Wear hearing protection!

NOTICE

Continuous operation (S1) with load > 60% or from a rated motor power of 55 kW!

Premature ageing of the electrolytic capacitors!

- ▶ Mains choke with $U_k = 4\%$ absolutely necessary.

If a drive controller with electrolytic capacitors in a DC link has not been in operation for more than one year, observe the following instructions.

www.keb.de/fileadmin/media/Techinfo/dr/tn/tn_dr_tn-format-capacitors-00009_en.pdf

BASIC SAFETY INSTRUCTIONS

Switching at the output

Switching between motor and drive controller is prohibited for single drives during operation as this may trigger the protection gear of the device. Function ‚speed search‘ must be activated if switching can not be avoided. Speed search may only be triggered after closing the motor contactor (e.g. by switching the control release).

Connecting and disconnecting is permissible with multiple motor drives if at least 1 motor is running during the switch-over process. The drive controller must be dimensioned to the occurring starting currents.

The ‚speed search‘ function must be activated if the motor is still running during a restart of the drive controller (mains on) (e.g. due to large rotating masses).

Switching at the input

For applications that require cyclic switching off and on of the drive controller, maintain an off-time of at least 5 min after the last switch on. If you require shorter cycle times please contact KEB Automation KG.

Short-circuit resistance

The drive converters are conditional short-circuit proof. After resetting the internal protection devices, the function as directed is guaranteed.

Exceptions:

- If an earth-leakage fault or short-circuit often occurs at the output, this can lead to a defect in the unit.
- If a short-circuit occurs during regenerative operation (2nd or 4th quadrant, regeneration into the DC link), this can lead to a defect in the unit.

1.6 Maintenance

The following maintenance work has to be carried out when required, but at least once per year by authorized and trained personnel. Check unit for loose screws and plugs and tighten if necessary.

- ▶ Check system for loose screws and plugs and tighten if necessary.
- ▶ Clean drive controller from dirt and dust deposits. Pay attention especially to cooling fins and protective grid of the fans.
- ▶ Examine and clean extracted air filter and cooling air filter of the control cabinet.
- ▶ Check the function of the fans of the drive controller. The fan must be replaced in case of audible vibrations or squeak.
- ▶ In the case of liquid-cooled drive controllers a visual test of the cooling circuit for leaks and corrosion must be carried out. The cooling circuit must be completely empty if a unit shall be switched off for a longer period. The cooling circuit must be blown out additionally with compressed air at temperatures below 0°C.

1.7 Repair

In case of malfunction, unusual noises or smells inform a person in charge!

DANGER

Unauthorized exchange, repair and modifications!

Unpredictable malfunctions!

- ▶ The function of the drive controller is dependent on its parameterization. Never replace without knowledge of the application.
- ▶ Modification or repair is permitted only by KEB Automation KG authorized personnel.
- ▶ Only use original manufacturer parts.
- ▶ Infringement will annul the liability for resulting consequences.

In case of failure, please contact the machine manufacturer. Only the machine manufacturer knows the parameterisation of the used drive controller and can provide an appropriate replacement or induce the maintenance.

BASIC SAFETY INSTRUCTIONS

1.8 Disposal

Electronic devices of the KEB Automation KG are exclusively professional devices for further industrial processing (so-called B2B devices).

Manufacturers of B2B devices are obliged to take back and recycle devices manufactured after 14.08.2018. These devices may not be disposed at the collection centres of public sector disposal organisations.

If no deviating agreement has been made between the customer and KEB or no deviating mandatory legal regulation exists, KEB products marked in this way can be returned. Company and keyword to the return point can be taken from the list below. Shipping costs are paid by the customer. Thereupon the devices will be professionally recycled and disposed.

The entry numbers are listed country-specific in the following table. The corresponding KEB return addresses can be found on our website.

Withdrawal by	WEEE-Reg.-No.	Keyword
Austria		
KEB Automation GmbH	ERA: 51976	Stichwort „Rücknahme WEEE“
France		
RÉCYLUM - Recycle point	ADEME: FR021806	Mots clés „KEB DEEE“
Germany		
KEB Automation KG	EAR: DE12653519	Stichwort „Rücknahme WEEE“
Italy		
COBAT	AEE: (IT) 19030000011216	Parola chiave „Ritiro RAEE“
Spain		
KEB Automation KG	RII-AEE 7427	Palabra clave „Retirada RAEE“
Česko		
KEB Automation KG	RETELA 09281/20 ECZ	Klíčové slovo: Zpětný odběr OEEZ
Slowakei		
KEB Automation KG	ASEKOL: RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

The packaging must be feed to paper and cardboard recycling.

2 Product Description

The device series COMBIVERT F6 concerns to drive controllers, which are optimized for operation at synchronous and asynchronous motors.

The COMBIVERT can be extended with a safety module for the use in safety-oriented applications. The COMBIVERT F6 series are drive controllers with functional safety, optimized for operation at synchronous and asynchronous motors.

Various safety functions are available for different applications. It can be operated with a fieldbus module at different fieldbus systems. The control board has a system comprehensive operating concept.

The COMBIVERT complies with the requirements of the Machinery Directive. The possible functions are certified via a type test.

The COMBIVERT is a product of limited availability in accordance with [EN 61800-3](#). This product may cause radio interference in residential areas. In this case the operator may need to take corresponding measures.

The Machinery Directive, EMC Directive, Low Voltage Directive and other directives and regulations must be observed

2.1 Specified application

The COMBIVERT serves exclusively for the control and regulation of three-phase motors. It is intended for the installation into electrical systems or machines in the industry.

Technical data and information for connection conditions shall be taken from the nameplate and from the instructions for use and must be strictly observed.

The used semiconductors and components of the KEB Automation KG are developed and dimensioned for the use in industrial products.

Restriction

If the product is used in machines, which work under exceptional conditions or if essential functions, life-supporting measures or an extraordinary safety step must be fulfilled, the necessary reliability and security must be ensured by the machine builder.

2.1.1 Residual risks

Despite intended use, the drive controller can reach unexpected operating conditions in case of error, with wrong parameterization, by faulty connection or unprofessional interventions and repairs. This can be:

- wrong direction of rotation
- motor speed too high
- motor is running into limitation
- motor can be under voltage even in standstill
- automatic start

2.2 Unintended use

The operation of other electric consumers is prohibited and can lead to the destruction of the devices. The operation of our products outside the indicated limit values of the technical data leads to the loss of any liability claims.

PRODUCT DESCRIPTION

2.3 Product features

These instructions for use describe the power units of the following devices:

Device type:	Drive controller
Series:	COMBIVERT F6
Power range:	160...315 kW / 400V
Housing	8

The COMBIVERT F6 is characterized by the following features:

- Operation of three-phase asynchronous motors and three-phase synchronous motors, in operating modes open-loop or closed-loop with and without speed feedback
- Following fieldbus systems are supported:
EtherCAT, VARAN, PROFINET, POWERLINK or CAN
- System-overlapping operating concept
- Wide operating temperature range
- Low switching losses by IGBT power unit
- Low noise development due to high switching frequencies
- Different heat sink concepts
- Temperature-controlled fan, easily replaceable
- Torque limits and s-curves are adjustable to protect gearboxes
- General protection functions of the COMBIVERT series against overcurrent, over-voltage, ground fault and overtemperature
- Analog inputs and outputs, digital inputs and outputs, relay output (potential-free), brake control and -supply, motor protection by I^2t , KTY- or PTC input, two encoder interfaces, diagnostic interface, fieldbus interface (depending on the control board)
- Integrated safety function according to [EN 61800-5-2](#)

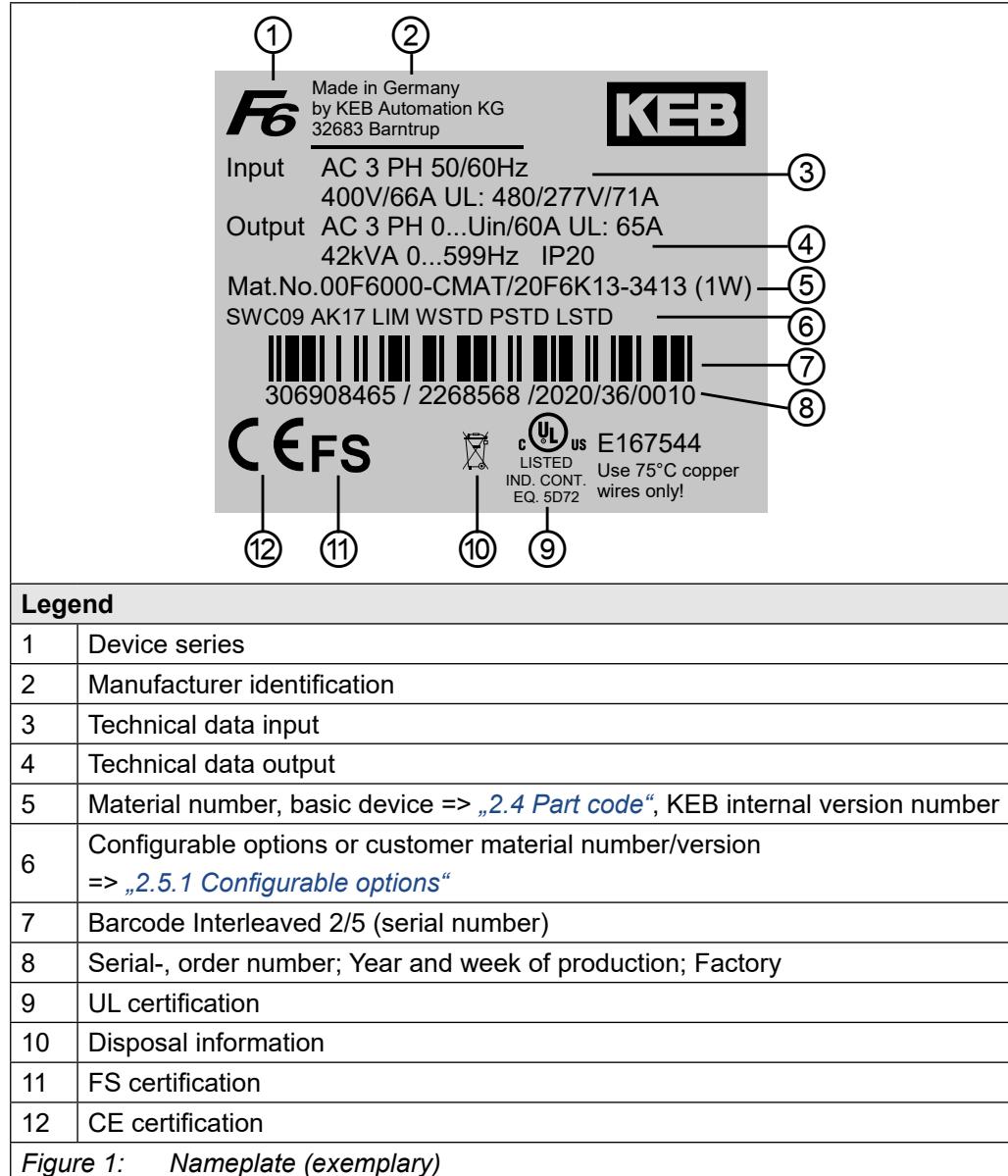
2.4 Part code

x x	F 6	x	x	x-x	x	x	x	x	x
Heat sink version					<p>1: Air-cooler, mounted version</p> <p>2: Liquid cooler (water), mounted version</p> <p>3: Air-cooler, through-mount version IP54-ready</p> <p>4: Liquid cooler (water), through-mount version IP54-ready</p> <p>5: Air-cooler, through-mount version IP20</p> <p>6: Liquid cooler (water), trough-mount version</p> <p>7: IP54-ready, sub-mounted braking resistors</p> <p>8: Liquid cooler (oil), through-mount version IP54-ready</p> <p>9: Liquid cooler (oil), through-mount version IP54-ready, sub-mounted braking resistors</p> <p>A: Liquid cooler (water), mounted version, sub-mounted braking resistors</p> <p>B: Liquid cooler (water), through-mount version, IP54-ready, High Performance, sub-mounted braking resistors</p> <p>C: Air-cooler, mounted version, Version 2</p> <p>D: Air-cooler, mounted version, High-Performance</p> <p>E: Liquid cooler (water), mounted version, High-Performance</p> <p>F: Air-cooler, through-mount version IP54-ready, High-Performance</p> <p>G: Liquid cooler (water), trough-mount version IP54-ready, High-Performance</p> <p>H: Air-cooler, Convektion, trough-mount version IP54-ready</p>				
Control board variant					<p>APPLIKATION</p> <p>1: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet-busmodule ³⁾</p> <p>B: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet-busmodule ³⁾, Alternative connector</p> <p>KOMPAKT</p> <p>1: Multi Encoder Interface, CAN^{® 2)}, STO, EtherCAT^{® 1)}</p> <p>2: Multi Encoder Interface, CAN^{® 2)}, STO, VARAN</p> <p>PRO</p> <p>0: No Encoder, CAN^{® 2)}, Real-Time Ethernetinterface ³⁾</p> <p>1: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet interface ³⁾</p> <p>3: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet interface ³⁾, RS485-potential free</p> <p>4: No Encoder, CAN^{® 2)}, Real-Time Ethernetinterface ³⁾, safe relay</p> <p>5: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet interface ³⁾, safety relay</p> <p>B: Multi Encoder Interface, CAN^{® 2)}, Real-Time Ethernet interface ³⁾, alternative connector</p>				

continued on the next page

PRODUCT DESCRIPTION

x x	F 6	x x x-x x x x	
Switching frequency, Software current limit, Turn-off current		0: 2 kHz/125%/150% 1: 4 kHz/125%/150% 2: 8 kHz/125%/150% 3: 16 kHz/125%/150% 4: 2 kHz/150%/180% 5: 4 kHz/150%/180% 6: 8 kHz/150%/180% 7: 16 kHz/150%/180%	8: 2 kHz/180%/216% 9: 4 kHz/180%/216% A: 8 kHz/180%/216% B: 8 kHz / HSD C: 6 kHz / HSD Non standard switching D: frequency / Overload characteristic E: Special Device
Voltage/ Connection type		1: 3ph 230 V AC/DC with braking transistor 2: 3ph 230 V AC/DC without braking transistor 3: 3ph 400 V AC/DC with braking transistor 4: 3ph 400 V AC/DC without braking transistor A: 3ph 400 V AC/DC incl. GTR7 / max. rectifier / max. pre-charging B: 3ph 400 V AC/DC without GTR7 / max. rectifier / max. pre-charging C: 3ph 400 V AC/DC. GTR7-variant 2 D: 3ph 400 V AC/DC GTR7-variant 2 / max. rectifier / max. pre-charging	
Housing		2...9	
Equipment		1: Safety module type 1 / STO at control type K 3: Safety module type 3 4: Safety module type 4 5: Safety module type 5	
Control type		A: APPLICATION K: COMPACT P: PRO	
Series		COMBIVERT F6	
Inverter size		10...33	


Table 1: Part code

- 1) EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany
 - 2) CANopen® is registered trademark of CAN in AUTOMATION - International Users and Manufacturers Group e.V.
 - 3) The Real-Time Ethernetbusmodul / Real-Time Ethernet interface contains various fieldbus control types which can be adjusted by software (parameter fb68)

The part code may not be used as order code, but only for identification!

2.5 Nameplate

PRODUCT DESCRIPTION

2.5.1 Configurable options

Features	Feature values	Description
Software	SWxxx ¹⁾	Software status of the drive controller
Accessories	Axxx ¹⁾	Selected accessories
	NAK	No accessories
Output frequency activation	LIM	Limitation to 599 Hz
	ULO	> 599 Hz activated
Warranty	WSTD	Warranty - Standard
	Wxxx ¹⁾	Warranty extension
Parameterization	PSTD	Parameterization - Standard
	Pxxx ¹⁾	Parameterization - Customer-specific
Nameplate logo	LSTD	Logo - Standard
	Lxxx ¹⁾	Logo - Customer-specific

Figure 2: Configurable options

¹⁾ „X“ indicates a variable value

3 Technical data

Unless otherwise indicated, all electrical data in the following chapter refer to a 3-phase AC mains.

3.1 Operating conditions

3.1.1 Climatic environmental conditions

Storage		Standard	Class	Descriptions
Ambient temperature		EN 60721-3-1	1K4	-25...55 °C
Relative humidity		EN 60721-3-1	1K3	5...95 % (without condensation)
Storage height		—	—	Max. 3000 m above sea level
Transport		Standard	Class	Descriptions
Ambient temperature		EN 60721-3-2	2K3	-25...70 °C
Relative humidity		EN 60721-3-2	2K3	95 % at 40 °C (without condensation)
Operation		Standard	Class	Descriptions
Ambient temperature		EN 60721-3-3	3K3	5...40 °C (extended to -10...45 °C)
Coolant inlet temperature	Air	—	—	5...40 °C (extended to -10...45 °C)
	Water ¹⁾	—	—	5...40 °C
Relative humidity		EN 60721-3-3	3K3	5...85 % (without condensation)
Version and degree of protection		EN 60529	IP20	Protection against foreign material > ø12.5 mm No protection against water Non-conductive pollution, occasional condensation when PDS is out of service. Drive controller generally, except power connections and fan unit (IPxxA)
Site altitude		—	—	Max. 2000 m above sea level <ul style="list-style-type: none"> With site altitudes over 1000 m a derating of 1 % per 100 m must be taken into consideration. With site altitudes over 2000 m, the control board to the mains has only basic isolation. Additional measures must be taken when wiring the control.

Table 2: Climatic environmental conditions

¹⁾ Observe the notes on the coolant => „6.1.3 Requirements for the coolant“.

OPERATING CONDITIONS

3.1.2 Mechanical environmental conditions

Storage	Standard	Class	Descriptions
Vibration limits	EN 60721-3-1	1M2	Vibration amplitude 1.5 mm (2...9 Hz) Acceleration amplitude 5 m/s ² (9...200 Hz)
Shock limit values	EN 60721-3-1	1M2	40 m/s ² ; 22 ms
Transport	Standard	Class	Descriptions
Vibration limits	EN 60721-3-2	2M1	Vibration amplitude 3.5 mm (2...9 Hz) Acceleration amplitude 10 m/s ² (9...200 Hz)
Shock limit values	EN 60721-3-2	2M1	100 m/s ² ; 11 ms
Operation	Standard	Class	Descriptions
Vibration limits	EN 60721-3-3	3M4	Vibration amplitude 3.0 mm (2...9 Hz) Acceleration amplitude 10 m/s ² (9...200 Hz)
	EN 61800-5-1	—	Vibration amplitude 0.075 mm (10...58 Hz) Acceleration amplitude 10 m/s ² (58...150 Hz)
Shock limit values	EN 60721-3-3	3M4	100 m/s ² ; 11 ms
Pressure in the water cooler	—	—	Rated operating pressure: 10 bar Max. operating pressure: 10 bar

Table 3: Mechanical environmental conditions

3.1.3 Further environmental operating conditions

Operation	Standard	Class	Descriptions
Chemically active substances	EN 60721-3-3	3C2	No salt spray
Mechanically active substances		3S2	—
Organic		3B1	—
UV resistance	EN 61800-5-1	—	No requirement

Table 4: Further environmental operating conditions

3.1.4 Electrical operating conditions

3.1.4.1 Device classification

Requirement	Standard	Class	Descriptions
Overvoltage category	EN 61800-5-1	III	—
Pollution degree	EN 61800-5-1	2	Non-conductive pollution, occasional condensation when PDS is out of service

Table 5: Device classification

3.1.4.2 Electromagnetic compatibility

The specified values are only achieved with the appropriate accessories.
=> „5.4 Accessories“

EMC emitted interference	Standard	Class	Descriptions
Conducted interference emission	EN 61800-3	C3	From KEB internal version number: 3R The specified class is only maintained in addition with a mains choke (without HF filter).
		C2 / C3	The specified class is only maintained in addition with a network choke and an HF filter. Information on interference suppression (rated switching frequency, max. motor cable) can be found in the corresponding filter instructions.
Radiated emitted interference	EN 61800-3	C2	—
EMF	EN 61800-5-1	—	Table P.2
Immunity	Standard	Level	Descriptions
Static discharges	EN 61000-4-2	8 kV 4 kV	AD (air discharge) CD (contact discharge)
Burst - Ports for process measurement control lines and signal interfaces	EN 61000-4-4	2 kV	—
Burst - AC - Power ports	EN 61000-4-4	4 kV	—
Surge - Power ports	EN 61000-4-5	1 kV 2 kV	Phase-phase Phase-ground
Conducted immunity, induced by high-frequency fields	EN 61000-4-6	10 V	0.15...80 MHz
Electromagnetic fields	EN 61000-4-3	10 V/m 3 V/m 1 V/m	80 MHz...1 GHz 1.4...2 GHz 2...2.7 GHz
voltage dips	EN 61000-4-11 EN 61000-4-34	Class 3	—
frequency fluctuations	EN 61000-4-28	± 2 %	—
Voltage unbalances	EN 61000-2-4	≤ 3 %	—

Table 6: Electromagnetic compatibility

3.2 Device data of the 400 V devices

3.2.1 Overview of 400 V devices

The technical data are for 2/4-pole standard motors. With other pole numbers the drive controller must be dimensioned onto the rated motor current. Contact KEB for special or medium frequency motors.

Device size		27	28	29	30 ⁹⁾	30 ¹⁰⁾	30 ¹¹⁾	30 ¹¹⁾	
Housing		8							
Rated apparent output power	S_{out} / kVA	208	256	319	395	395	395	395	
Max. rated motor power ¹⁾	P_{mot} / kW	160	200	250	315	315	315	315	
Rated input voltage	U_N / V	400 (UL: 480)							
Input voltage range	U_{in} / V	280...550							
Mains phases		3							
Mains frequency	f_N / Hz	50 / 60 ±2							
Rated input current @ $U_N = 400V$	I_{in} / A	315	390	485	600	600	600	600	
Rated input current @ $U_N = 480V$	I_{in_UL} / A	269	337	414	513	513	513	513	
Insulation resistance @ $U_{dc} = 500V$	R_{iso} / MΩ	> 15							
Output voltage	U_{out} / V	0... U_{in}							
Output frequency ²⁾	f_{out} / Hz	0...599							
Output phases		3							
Rated output current @ $U_N = 400V$	I_N / A	300	370	460	570	570	570	570	
Rated output current @ $U_N = 480V$	I_{N_UL} / A	260	325	400	495	495	495	495	
Rated output overload (60s) ^{3) 4)}	I_{60s} / %	125	125	125	125	150	150	125	
Software current limit ³⁾	I_{lim} / %	125	125	125	125	150	150	125	
Overcurrent ³⁾	I_{oc} / %	150	150	150	150	180	180	150	
Rated switching frequency	f_{SN} / kHz	4	4	2	2	2	2	4	
Max. switching frequency ⁵⁾	f_{S_max} / kHz	8	8	8	8	8	8	8	
Power dissipation at rated operation ¹⁾	P_D / kW	3	3,8	3,9	5,3	5,3	5,3	6,1	
Overload current over time ³⁾	I_{OL} / %	=> 3.2.3.1 Overload characteristic (OL)							
Maximum current 0Hz / 50Hz at $f_S = 2$ kHz	I_{out_max} / %	150/150	122/150	98/150	68/143	72/172	100/180	105/150	

continued on the next page

Device size		27	28	29	30 ⁹⁾	30 ¹⁰⁾	30 ¹¹⁾	30 ¹¹⁾
Housing					8			
Maximum current 0Hz / 50Hz at $f_s = 4$ kHz	I_{out_max} / %	91/150	74/150	59/122	38/97	40/110	59/129	75/150
Maximum current 0Hz / 50Hz at $f_s = 8$ kHz	I_{out_max} / %	36/87	29/71	24/57	20/55	17/54	31/77	37/90
Max. braking current	I_B_{max} / A				380			
Min. braking resistor value	R_B_{min} / Ω				2,2			
Braking transistor ⁶⁾					Max. cycle time: 120s; Max c.d.f.: 50 %			
Protective function for braking transistor					Short-circuit monitoring			
Braking resistor protective function (Error GTR7 always on) ⁷⁾					Feedback signal evaluation and current shutdown (only for AC mains connection)			
Max. motor cable length shielded ⁸⁾	l / m				100			

Table 7: Overview of the 400 V devices

¹⁾ Rated operation corresponds to $U_N = 400$ V, rated switching frequency, output frequency = 50Hz (4-pole standard asynchronous motor).

²⁾ The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Notice! Devices with a maximum output frequency higher than 599Hz are subject to export restrictions.

³⁾ The values refer in % to the rated output current I_N .

⁴⁾ Observe limitations => => 3.2.3.1 Overload characteristic (OL)

⁵⁾ A detailed description of the derating => 3.3.1 Switching frequency and temperature.

⁶⁾ The cyclic duration factor is additionally limited by the used braking resistor.

⁷⁾ The feedback signal evaluation monitors the functionality of the braking transistor. The current is switched off via the internal mains input bridge of the AC supply. There is no current switch-off with DC voltage supply.

⁸⁾ The maximum cable length depends on various factors. Further information can be found in the corresponding filter instructions.

⁹⁾ Only available as an air cooler.

¹⁰⁾ Only available as an air cooler. Not suitable for S1 operation at $T > 40^\circ\text{C}$ (coolant inlet temperature air)

¹¹⁾ Only available as fluid cooler (water).

DEVICE DATA OF THE 400V DEVICES

3.2.2 Voltage and frequencies for 400V devices

Input voltages and frequencies		
Rated input voltage	U_N / V	400
Rated mains voltage (USA)	U_{N_UL} / V	480
Input voltage range	U_{IN} / V	280...550
Input phases		3
Mains frequency	f_N / Hz	50/60
Mains frequency tolerance	$\pm f_N$ / Hz	2

Table 8: Input voltages and frequencies of the 400V devices

DC link voltage		
DC link rated voltage @ $U_N = 400V$	U_{N_dc} / V	565
DC link rated voltage @ $U_{N_UL} = 480V$	$U_{N_UL_dc}$ / V	680
DC link voltage working voltage range	U_{IN_dc} / V	390...780

Table 9: DC link voltage for 400V devices

Output voltages and frequencies		
Output voltage at AC supply	¹⁾ U_{out} / V	0... U_{N_ac}
Output frequency	²⁾ f_{out} / Hz	0...599
Output phase		3

Table 10: Output voltages and frequencies of the 400V devices

- 1) The voltage to the motor is dependent on the actual input voltage and the control method („3.2.2.1 Example of the calculation of the possible motor voltage:“).
- 2) The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with a maximum output frequency higher than 599Hz are restricted for export.

3.2.2.1 Example of the calculation of the possible motor voltage:

The motor voltage for dimensioning of the drive is depending on the used components. The motor voltage reduces according to the following table:

Component	Reduction / %	Example
Mains choke U_k	4	
Drive controller open-loop	4	
Drive controller closed-loop	8	
Motor choke U_k	1	
Non-rigid supply system	2	<p>Open-loop drive controller with mains- and motor choke at non-rigid supply system:</p> <p>400 V mains voltage (100%) - 36 V reduced voltage (11%) = 356 V motor voltage</p>

Table 11: Example of the calculation of the possible motor voltage:

3.2.3 Input and output currents/ overload

Device size		27	28	29	30 ⁴⁾	30 ⁵⁾	30 ⁶⁾	30 ⁶⁾
Rated input current @ $U_N = 400V$	I_{in} / A	315	390	485	600	600	600	600
Rated input current @ $U_{N_UL} = 480V$	$I_{in_UL_dc} / A$	269	337	414	513	513	513	513
Rated input current DC @ $U_{N_dc} = 565V$	I_{in_dc} / A	380	469	583	723	723	723	723
Rated input current DC @ $U_{N_UL_dc} = 680V$	$I_{in_UL_dc} / A$	330	412	507	628	628	628	628
Rated output current @ $U_N = 400V$	I_N / A	300	370	460	570	570	570	570
Rated output current @ $U_{N_UL} = 480V$	I_{N_UL} / A	260	325	400	495	495	495	495
Rated output overload (60 s)	²⁾ $I_{60s} / %$	125				150	150	125
Overload current	²⁾ $I_{OL} / %$	=> 3.2.3.1 Overload characteristic (OL)						
Software current limit	^{2) 3)} $I_{lim} / %$	125			150	150	125	
Overcurrent	²⁾ $I_{OC} / %$	150			180	180	150	

Table 12: Input and output currents / overload of the 400 V devices

¹⁾ The values resulting from rated operation with B6 rectifier circuit and mains choke 4% U_k .

²⁾ The values refer in % to the rated output current I_N .

³⁾ Limitation of the current setpoint in closed-loop operation. This setpoint limit is not active in v/f operation.

⁴⁾ Only available as an air cooler.

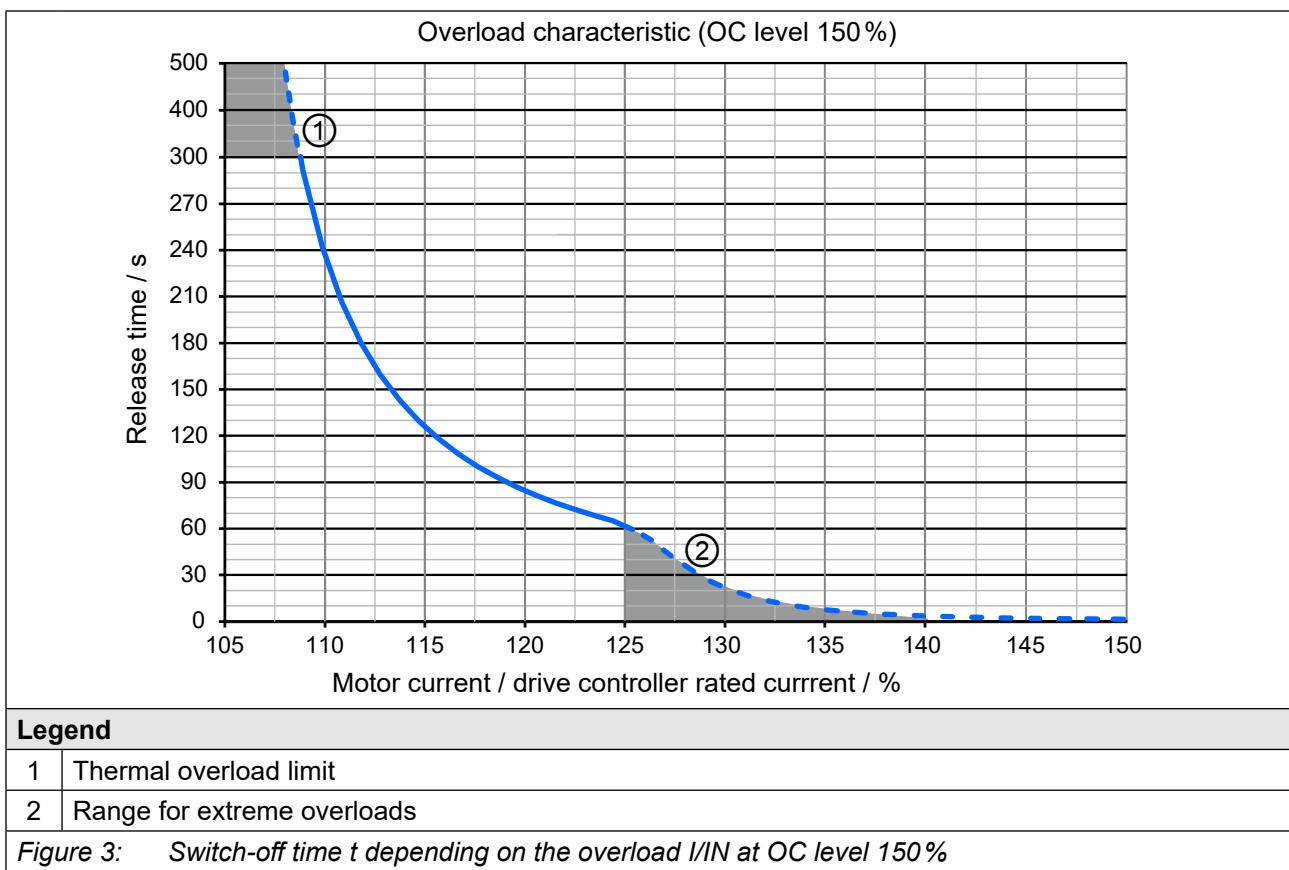
⁵⁾ Only available as an air cooler. Not suitable for S1 operation at $T > 40^\circ C$ (coolant inlet temperature air)

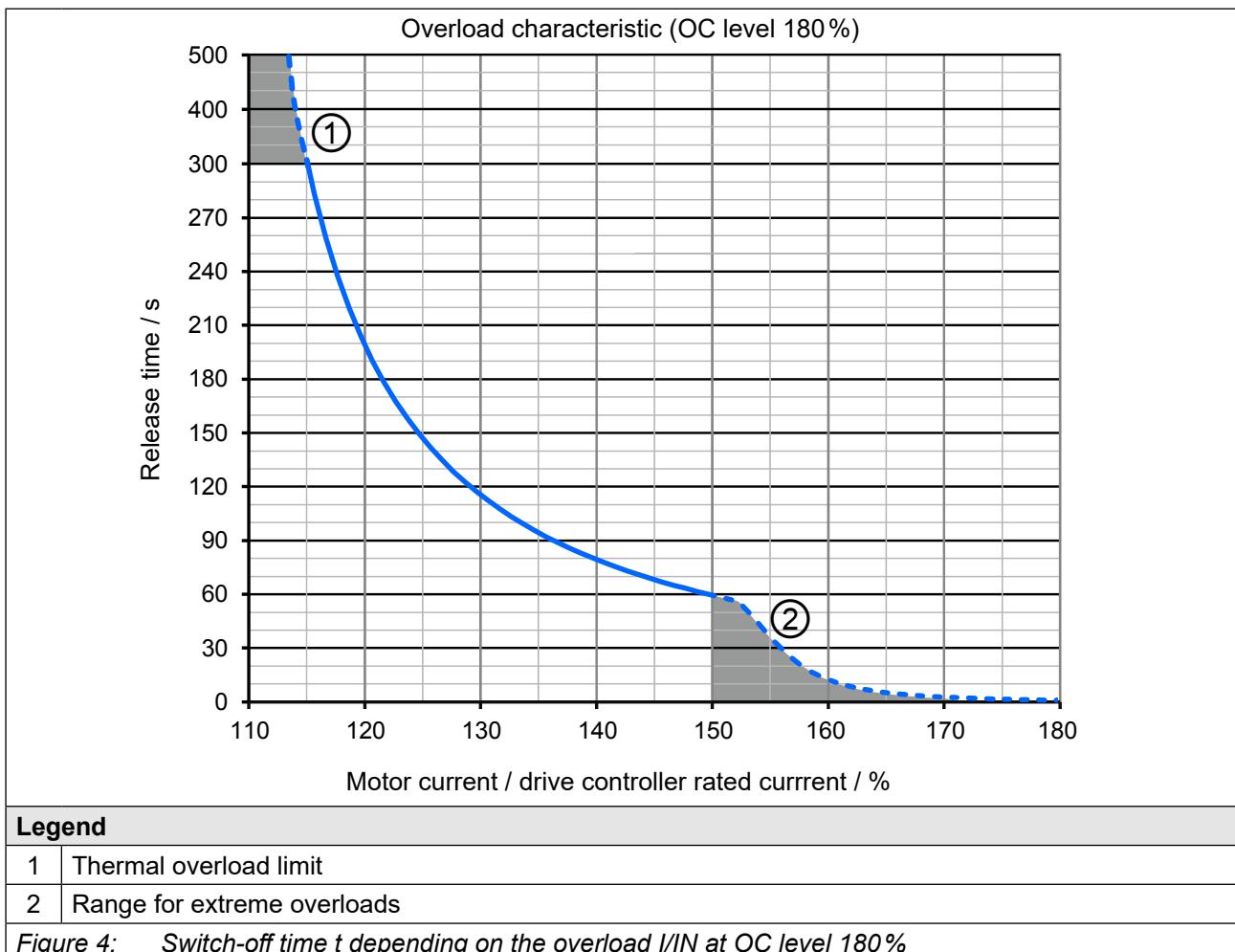
⁶⁾ Only available as fluid cooler (water).

DEVICE DATA OF THE 400V DEVICES

3.2.3.1 Overload characteristic (OL)

All drive controllers can be operated at rated switching frequency with an utilisation of 125 % for 60 s.


The OL overload function is a root mean square (RMS) function.


The greater the difference between the overload and underload phases, the greater the deviation of the RMS from the arithmetic mean value.

For extreme overloads => „*Figure 3: Switch-off time t depending on the overload I/IN at OC level 150 %*“, the load is weighted more heavily. This means the load is provided with a factor for the calculation of the RMS value, by way that the overload protection function triggers, even if the RMS value does not reach 100%.

Restrictions:

- The thermal design of the heat sink is based on the rated operation. The following values are taken into account: rated output current, ambient temperature, rated switching frequency, rated voltage.
- At high ambient temperatures and/or high heat sink temperatures (for example, by preceding utilisation nearly 100%) the drive controller can change to overtemperature error before triggering the protective function OL.
- At low output frequencies or switching frequencies higher than the rated switching frequency, the frequency-dependent maximum current can be exceeded before and error OL2 can be triggered
(=> [3.2.3.2 Frequency-dependent maximum current \(OL2\)](#)).

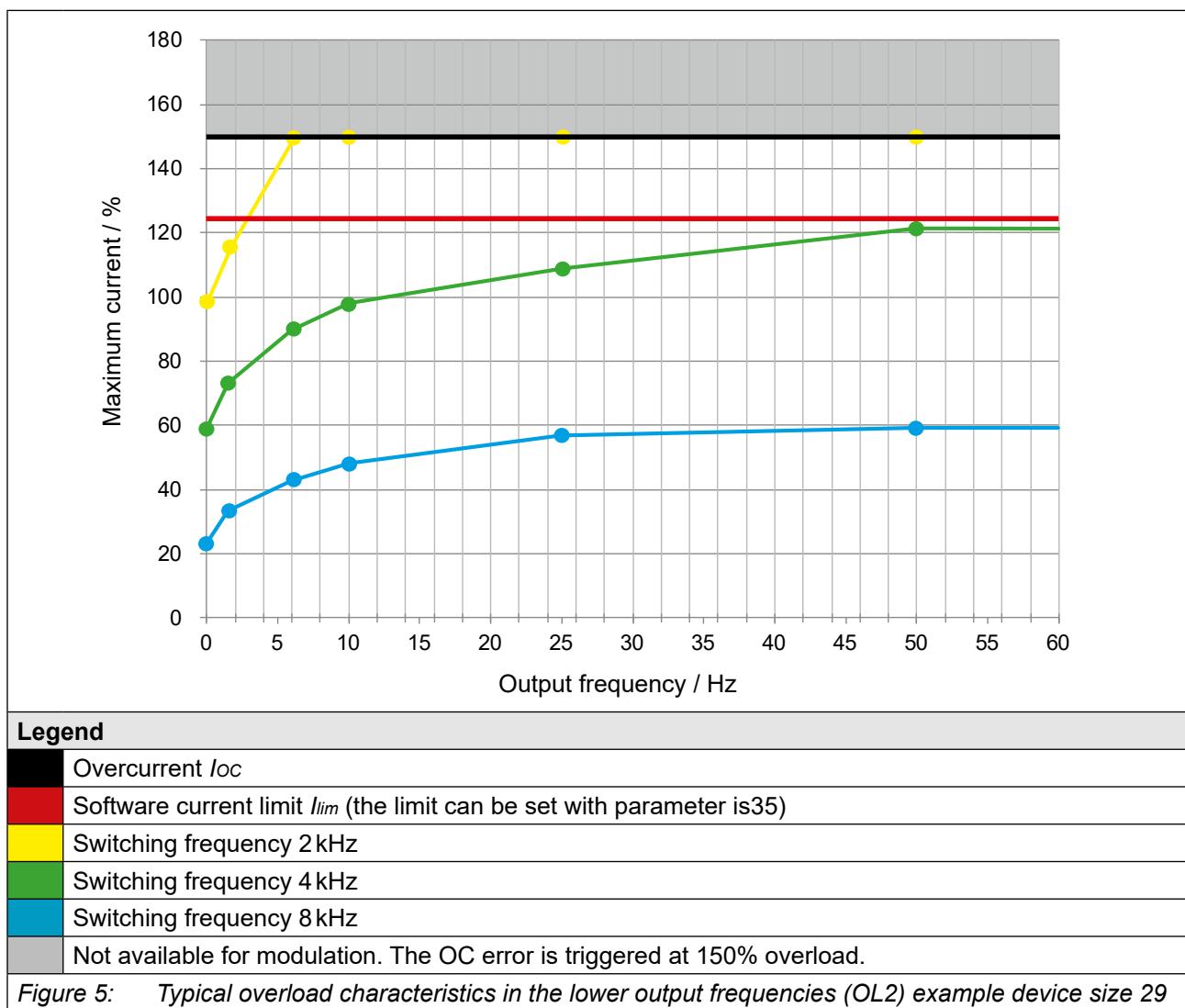
- On exceeding a load of 105 % the overload integrator starts.
- When falling below the integrator counts backwards.
- If the integrator achieves the overload characteristic "ERROR overload (OL)" is triggered.

After a cooling down period, the integrator can be reset now. The drive controller must remain switched on during the cooling down phase.

Operation in the range of the thermal overload limit

Due to the high slope of the overload characteristic, the duration of a permissible overload in this range ① cannot be determined exactly. Therefore, the design of the drive controller should be assumed to have a maximum overload time of 300s.

DEVICE DATA OF THE 400V DEVICES


3.2.3.2 Frequency-dependent maximum current (OL2)

The characteristics of the maximum currents for a switching frequency which are depending on the output frequency are different for each drive controller, but the following rules are generally applicable for housing size 8:

- Lower maximum currents apply for switching frequencies > rated switching frequency.

If error (OL2) shall be triggered on exceeding the maximum currents or if the switching frequency is automatically reduced (derating) can be adjusted in the drive controller parameters.

The following characteristics indicate the permissible maximum current for the output frequency values 0Hz, 1,5Hz, 6Hz, 10Hz, 25Hz and 50Hz. Device size 29 (OC level: 150 %) is represented exemplary.

The frequency-dependent maximum current I_{out_max} refers in % to the rated output current I_N .

The current remains constant from the last specified output frequency value.

The values for the respective unit size are listed in the following tables.

Frequency-dependent maximum current (air cooler)

Device size		27						
Rated switching frequency		4 kHz						
Output frequency		f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 62.5 µs (Parameter is22=0)</i>	2 kHz	150	150	150	150	150	150	
	4 kHz	91	112	136	147	150	150	
	8 kHz	36	52	66	72	82	87	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 71.4 µs (Parameter is22=1)</i>	1.75 kHz	150	150	150	150	150	150	
	3.5 kHz	106	129	150	150	150	150	
	7 kHz	50	67	84	91	103	112	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 83.3 µs (Parameter is22=2)</i>	1.5 kHz	150	150	150	150	150	150	
	3 kHz	120	145	150	150	150	150	
	6 kHz	63	82	101	109	123	137	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 100 µs (Parameter is22=3)</i>	1.25 kHz	150	150	150	150	150	150	
	2.5 kHz	136	150	150	150	150	150	
	5 kHz	77	97	118	128	144	150	

Table 13: Frequency-dependent maximum current for device size 27 (air cooler)

Device size		28						
Rated switching frequency		4 kHz						
Output frequency		f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 62.5 µs (Parameter is22=0)</i>	2 kHz	122	144	150	150	150	150	
	4 kHz	74	91	110	119	134	150	
	8 kHz	29	42	54	58	66	71	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 71.4 µs (Parameter is22=1)</i>	1.75 kHz	122	144	150	150	150	150	
	3.5 kHz	86	104	129	145	150	150	
	7 kHz	40	54	68	73	83	91	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 83.3 µs (Parameter is22=2)</i>	1.5 kHz	122	144	150	150	150	150	
	3 kHz	98	117	148	150	150	150	
	6 kHz	51	67	82	89	100	111	
Frequency-dependent maximum current @ f_s <i>Basic Time Period = 100 µs (Parameter is22=3)</i>	1.25 kHz	122	144	150	150	150	150	
	2.5 kHz	110	131	150	150	150	150	
	5 kHz	63	79	96	104	117	132	

Table 14: Frequency-dependent maximum current for device size 28 (air cooler)

DEVICE DATA OF THE 400V DEVICES

Device size		29						
Rated switching frequency		2 kHz						
Output frequency		f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ f_s Basic Time Period = 62.5 μ s (Parameter is22=0)	I_{out_max} / %	2 kHz	98	116	150	150	150	150
		4 kHz	59	73	89	96	108	122
		8 kHz	24	34	43	47	53	57
Frequency-dependent maximum current @ f_s Basic Time Period = 71.4 μ s (Parameter is22=1)	I_{out_max} / %	1.75 kHz	98	116	150	150	150	150
		3.5 kHz	69	84	104	117	126	137
		7 kHz	33	44	55	59	67	73
Frequency-dependent maximum current @ f_s Basic Time Period = 83.3 μ s (Parameter is22=2)	I_{out_max} / %	1.5 kHz	98	116	150	150	150	150
		3 kHz	79	94	119	138	144	150
		6 kHz	41	54	66	71	80	90
Frequency-dependent maximum current @ f_s Basic Time Period = 100 μ s (Parameter is22=3)	I_{out_max} / %	1.25 kHz	98	116	150	150	150	150
		2.5 kHz	88	105	134	150	150	150
		5 kHz	50	64	77	84	94	106

Table 15: Frequency-dependent maximum current for device size 29 (air cooler)

Device size		30 (OC level: 150%)						
Rated switching frequency		2 kHz						
Output frequency		f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ f_s Basic Time Period = 62.5 μ s (Parameter is22=0)	I_{out_max} / %	2 kHz	68	94	147	125	136	143
		4 kHz	38	61	77	83	91	97
		8 kHz	20	35	44	47	52	55
Frequency-dependent maximum current @ f_s Basic Time Period = 71.4 μ s (Parameter is22=1)	I_{out_max} / %	1.75 kHz	68	94	117	125	136	143
		3.5 kHz	46	69	87	93	103	108
		7 kHz	25	41	52	56	62	66
Frequency-dependent maximum current @ f_s Basic Time Period = 83.3 μ s (Parameter is22=2)	I_{out_max} / %	1.5 kHz	68	94	117	125	136	143
		3 kHz	53	78	97	104	114	120
		6 kHz	29	48	61	65	72	76
Frequency-dependent maximum current @ f_s Basic Time Period = 100 μ s (Parameter is22=3)	I_{out_max} / %	1.25 kHz	68	94	117	125	136	143
		2.5 kHz	60	86	107	114	125	131
		5 kHz	34	54	69	74	82	86

Table 16: Frequency-dependent maximum current for device size 30 (OC level: 150%) (air cooler)

Device size		30 (OC level: 180%)					
Rated switching frequency		2 kHz					
Output frequency	f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ fs	2 kHz	72	95	127	139	158	172
$I_{out_max} / \%$	4 kHz	40	56	77	86	100	110
Basic Time Period = $62.5 \mu\text{s}$ (Parameter $is22=0$)	8 kHz	17	27	37	42	49	54
	1.75 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs	3.5 kHz	48	86	89	99	114	126
$I_{out_max} / \%$	7 kHz	23	35	47	53	61	68
Basic Time Period = $71.4 \mu\text{s}$ (Parameter $is22=1$)	1.5 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs	3 kHz	56	76	102	113	129	141
$I_{out_max} / \%$	6 kHz	29	42	57	64	74	82
Basic Time Period = $83.3 \mu\text{s}$ (Parameter $is22=2$)	1.25 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs	2.5 kHz	64	85	114	126	144	156
$I_{out_max} / \%$	5 kHz	35	49	67	75	87	96
Basic Time Period = $100 \mu\text{s}$ (Parameter $is22=3$)							

Table 17: Frequency-dependent maximum current for device size 30 (OC level: 180%) (air cooler)

DEVICE DATA OF THE 400V DEVICES

Frequency-dependent maximum current (Fluid cooler water)

Device size		27						
Rated switching frequency		4 kHz						
Output frequency	f_{out} / Hz	0	1,5	6	10	25	50	
Frequency-dependent maximum current @ fs	2 kHz	150	150	150	150	150	150	
$I_{out_max} / \%$	4 kHz	91	112	136	147	150	150	
Basic Time Period = $62.5 \mu\text{s}$ (Parameter is22=0)	8 kHz	36	52	66	72	82	87	
	1.75 kHz	150	150	150	150	150	150	
Frequency-dependent maximum current @ fs	3.5 kHz	106	129	150	150	150	150	
$I_{out_max} / \%$	7 kHz	50	67	84	91	103	112	
Basic Time Period = $71.4 \mu\text{s}$ (Parameter is22=1)	1.5 kHz	150	150	150	150	150	150	
Frequency-dependent maximum current @ fs	3 kHz	120	145	150	150	150	150	
$I_{out_max} / \%$	6 kHz	63	82	101	109	123	137	
Basic Time Period = $83.3 \mu\text{s}$ (Parameter is22=2)	1.25 kHz	150	150	150	150	150	150	
Frequency-dependent maximum current @ fs	2.5 kHz	136	150	150	150	150	150	
$I_{out_max} / \%$	Basic Time Period = $100 \mu\text{s}$ (Parameter is22=3)	5 kHz	77	97	118	128	144	150

Table 18: Frequency-dependent maximum current for device size 27 (fluid cooler water)

Device size		28					
Rated switching frequency		4 kHz					
Output frequency	f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ fs	2 kHz	122	144	150	150	150	150
$I_{out_max} / \%$	4 kHz	74	91	110	119	134	150
Basic Time Period = $62.5 \mu\text{s}$ (Parameter is22=0)	8 kHz	29	42	54	58	66	71
Frequency-dependent maximum current @ fs	1.75 kHz	122	144	150	150	150	150
$I_{out_max} / \%$	3.5 kHz	86	104	129	145	150	150
Basic Time Period = $71.4 \mu\text{s}$ (Parameter is22=1)	7 kHz	40	54	68	73	83	91
Frequency-dependent maximum current @ fs	1.5 kHz	122	144	150	150	150	150
$I_{out_max} / \%$	3 kHz	98	117	148	150	150	150
Basic Time Period = $83.3 \mu\text{s}$ (Parameter is22=2)	6 kHz	51	67	82	89	100	111
Frequency-dependent maximum current @ fs	1.25 kHz	122	144	150	150	150	150
$I_{out_max} / \%$	2.5 kHz	110	131	150	150	150	150
Basic Time Period = $100 \mu\text{s}$ (Parameter is22=3)	5 kHz	63	79	96	104	117	132

Table 19: Frequency-dependent maximum current for device size 28 (fluid cooler water)

Device size		29					
Rated switching frequency		2 kHz					
Output frequency	f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ fs <i>Basic Time Period = 62.5 μs (Parameter is22=0)</i>	2 kHz	98	116	150	150	150	150
	4 kHz	59	73	89	96	108	122
	8 kHz	24	34	43	47	53	57
Frequency-dependent maximum current @ fs <i>Basic Time Period = 71.4 μs (Parameter is22=1)</i>	1.75 kHz	98	116	150	150	150	150
	3.5 kHz	69	84	104	117	126	137
	7 kHz	33	44	55	59	67	73
Frequency-dependent maximum current @ fs <i>Basic Time Period = 83.3 μs (Parameter is22=2)</i>	1.5 kHz	98	116	150	150	150	150
	3 kHz	79	94	119	138	144	150
	6 kHz	41	54	66	71	80	90
Frequency-dependent maximum current @ fs <i>Basic Time Period = 100 μs (Parameter is22=3)</i>	1.25 kHz	98	116	150	150	150	150
	2.5 kHz	88	105	134	150	150	150
	5 kHz	50	64	77	84	94	106

Table 20: Frequency-dependent maximum current for device size 29 (fluid cooler water)

Device size		30 (OC level: 180%)					
Rated switching frequency		2 kHz					
Output frequency	f_{out} / Hz	0	1,5	6	10	25	50
Frequency-dependent maximum current @ fs <i>Basic Time Period = 62.5 μs (Parameter is22=0)</i>	2 kHz	100	114	147	157	169	180
	4 kHz	59	78	103	111	121	129
	8 kHz	31	45	60	65	72	77
Frequency-dependent maximum current @ fs <i>Basic Time Period = 71.4 μs (Parameter is22=1)</i>	1.75 kHz	100	114	147	157	169	180
	3.5 kHz	69	87	114	122	133	141
	7 kHz	38	53	71	77	84	90
Frequency-dependent maximum current @ fs <i>Basic Time Period = 83.3 μs (Parameter is22=2)</i>	1.5 kHz	100	114	147	157	169	180
	3 kHz	79	96	125	134	145	154
	6 kHz	45	62	82	88	97	103
Frequency-dependent maximum current @ fs <i>Basic Time Period = 100 μs (Parameter is22=3)</i>	1.25 kHz	100	114	147	157	169	180
	2.5 kHz	89	105	136	145	157	167
	5 kHz	52	70	930	99	109	116

Table 21: Frequency-dependent maximum current for device size 30 (OC level: 180%) (fluid cooler water)

DEVICE DATA OF THE 400V DEVICES

Device size		30						
Rated switching frequency		4 kHz						
Output frequency		f_{out} / Hz	0	3	6	10	25	50
Frequency-dependent maximum current @ f_s Basic Time Period = $62.5 \mu\text{s}$ (Parameter is22=0)	2 kHz	105	115	122	130	150	150	
	4 kHz	75	89	100	108	134	150	
	8 kHz	37	51	60	72	90	90	
Frequency-dependent maximum current @ f_s Basic Time Period = $71.4 \mu\text{s}$ (Parameter is22=1)	1.75 kHz	105	115	122	130	150	150	
	3.5 kHz	82	95	105	113	138	150	
	7 kHz	46	60	70	81	101	105	
Frequency-dependent maximum current @ f_s Basic Time Period = $83.3 \mu\text{s}$ (Parameter is22=2)	1.5 kHz	105	115	122	130	150	150	
	3 kHz	90	102	111	119	142	150	
	6 kHz	56	70	80	90	112	120	
Frequency-dependent maximum current @ f_s Basic Time Period = $100 \mu\text{s}$ (Parameter is22=3)	1.25 kHz	105	115	122	130	150	150	
	2.5 kHz	97	108	116	124	146	150	
	5 kHz	65	79	90	99	123	135	

Table 22: Frequency-dependent maximum current for device size 30 (OC level: 150%) (fluid cooler water)

3.2.4 Overview of rectifier data for 400 V devices

Device size		27	28	29	30
Rated rectifier power	P_{rect} / kW	174	217	271	342
Continuous rectifier power	¹⁾ P_{rect_cont} / kW	342	342	342	342
Continuous input current @ $U_N = 400V$	¹⁾ I_{in_cont} / A	600	600	600	600
Continuous input current @ $U_{N_UL} = 480V$	¹⁾ $I_{in_UL_cont}$ / A	513	513	513	513
Rated output current DC @ $U_{N_dc} = 565V$	I_{out_dc} / A	380	469	583	723
Continuous output current DC @ $U_{N_dc} = 565V$	¹⁾ $I_{out_dc_cont}$ / A	723	723	723	723
Rated output current DC @ $U_{N_UL_dc} = 680V$	$I_{out_UL_dc}$ / A	330	412	507	628
Continuous output current DC @ $U_{N_UL_dc} = 680V$	¹⁾ $I_{out_UL_dc_cont}$ / A	628	628	628	628

Table 23: Overview of rectifier data for 400 V devices

¹⁾ Continuous operation is a load that exceeds the rated operation. Continuous operation only occurs if the internal rectifier is used to supply additional drive controllers via the DC terminals => „5.3.6 DC-bus connection“. In continuous operation, the OH error can be triggered depending on the operating conditions of the internal inverter.

3.2.5 Power dissipation at rated operation for 400 V devices

Device size		27	28	29	30 ³⁾	30 ⁴⁾	30 ⁵⁾	30 ⁵⁾
Overcurrent	I_{oc} / %	150	150	150	150	180	150	150
Power dissipation at rated operation	¹⁾ P_D / kW	3	3,8	3,9	5,3	5,3	5,3	6,1
Power dissipation at rated operation DC	²⁾ P_{D_dc} / kW	2,6	3,3	3,1	4,1	4,1	4,1	5,1

Table 24: Power dissipation of the 400 V devices

¹⁾ Rated operation corresponds to $U_N = 400V$; f_{SN} ; I_N ; $f_N = 50Hz$ (typically value)

²⁾ Rated operation DC corresponds to $U_{N_dc} = 565V$; I_N

³⁾ Only available as an air cooler.

⁴⁾ Only available as an air cooler. Not suitable for S1 operation at $T > 40^\circ C$ (coolant inlet temperature air)

⁵⁾ Only available as fluid cooler (water).

DEVICE DATA OF THE 400V DEVICES

3.2.6 Fusing for 400V devices

3.2.6.1 Fuse protection for AC supply

Device size	Max. size of the fuse / A			
	$U_N = 400V$ gG (IEC)	$U_N = 480V$ class „J“	$U_N = 480V$	
	SCCR 100 kA	SCCR 18 kA	SCCR 100 kA	Type ¹⁾
27	500	400	400	COOPER BUSSMANN 170M3xx9 COOPER BUSSMANN 170M3069 COOPER BUSSMANN 170M3119 COOPER BUSSMANN 170M3269 LITTELFUSE L70QS400.X SIBA 206xy32.400
28	500	500	500	COOPER BUSSMANN 170M3021 COOPER BUSSMANN 170M3121 COOPER BUSSMANN 170M3171 COOPER BUSSMANN 170M3271 LITTELFUSE L70QS500.X SIBA 206xy32.500
29	630	600	550	COOPER BUSSMANN 170M3022 COOPER BUSSMANN 170M3122 COOPER BUSSMANN 170M3172 COOPER BUSSMANN 170M3272 SIBA 206xy32.550
			600	LITTELFUSE L70QS600.X
30	630	600	630	COOPER BUSSMANN 170M3023 COOPER BUSSMANN 170M3123 COOPER BUSSMANN 170M3173 COOPER BUSSMANN 170M3273 SIBA 206xy32.630
			600	LITTELFUSE L70QS600.X

Table 25: Fusings for 400V / 480V devices

¹⁾ "x" stands for different indicators. "y" stands for different connection variants.

Short-circuit capacity

According to requirements from [EN 61439-1](#) and [EN 61800-5-1](#), the following applies to connection to a mains supply: The devices are suitable for the use in a circuit capable of delivering not more than 100 kA eff. unaffected symmetrical short-circuit current.

3.2.6.2 Fusing for DC supply

Device size	Recommended size of the fuse / A		Permissible fuses ¹⁾
	$U_{N_dc} = 565V$	$U_{N_UL_dc} = 680V$	
	SCCR 85 kA	SCCR 85 kA	
27	500	400	SIBA 20 568 34.400 ²⁾ Bussmann 170M4246 Bussmann 170M6199 Littelfuse PSR073DL0700 Littelfuse PSX3XLDB0900
28	630	550	
29	700	630	
30	900	800	

Table 26: DC Fusing of the 400 V / 480 V devices

- ¹⁾ Fuses of the same type with lower rated currents can be used if they are suitable for the application.
²⁾ Fuse without UL certification.

NOTICE**Observe the rated voltage of the fuse!**

- The rated voltage of the fuse must be at least equal to the maximum DC supply voltage of the drive controller.

3.3 General electrical data

3.3.1 Switching frequency and temperature

The drive controller cooling is designed by way that the heat sink overtemperature threshold is not exceeded at rated conditions. A switching frequency higher than the rated switching frequency also produces higher losses and thus a higher heat sink heating. If the heat sink temperature reaches a critical threshold (T_{DR}), the switching frequency can be reduced automatically step by step. This prevents that the drive controller switches off due to overheating of the heat sink. If the heat sink temperature falls below the threshold T_{UR} , the switching frequency is increased back to the setpoint. At temperature T_{EM} the switching frequency is immediately reduced to rated switching frequency. „Derating“ must be activated, for this function to work.

3.3.1.1 Switching frequencies and temperatures for air coolers

Device size		27	28	29	30	30 ³⁾
Overcurrent	I_{oc} / %	150	150	150	150	180
Rated switching frequency	¹⁾ f_{SN} / kHz	4	4	2	2	2
Max. switching frequency	¹⁾ f_{S_max} / kHz	8	8	8	8	8
Min. switching frequency	¹⁾ f_{S_min} / kHz	1,25	1,25	1,25	1,25	1,25
Max. heat sink temperature 1	T_{HS1} / °C	tbd	85	85	103	97
Max. heat sink temperature 2	T_{HS2} / °C	tbd	95	95	95	95
Max. heat sink temperature 3	T_{HS3} / °C	tbd	82	82	95	89
Max. interior temperature power unit 1	T_{ID_PU1} / °C	tbd	65	65	65	65
Max. interior temperature power unit 2	T_{ID_PU2} / °C	tbd	75	75	80	80
Max. interior temperature power unit 3	T_{ID_PU3} / °C	tbd	90	90	90	90
Temperature for derating the switching frequency	²⁾ T_{DR} / °C	tbd	75	75	95	85
Temperature for uprating the switching frequency	²⁾ T_{UR} / °C	tbd	65	65	85	75
Temperature for switching to rated switching frequency	²⁾ T_{EM} / °C	tbd	80	80	100	90

Table 27: Switching frequencies and temperatures for air coolers

¹⁾ The output frequency should be limited in such a way that it does not exceed 1/10 of the switching frequency.

²⁾ The switching point refers to the temperature of T_{HS1}

³⁾ Only available as an air cooler. Not suitable for S1 operation at $T > 40^\circ\text{C}$ (coolant inlet temperature air)

3.3.1.2 Switching frequencies and temperatures for fluid coolers (water)

Device size		27	28	29	30	30
Overcurrent	$I_{oc} / \%$	150	150	150	180	150
Rated switching frequency	¹⁾ f_{SN} / kHz	4	4	2	2	4
Max. switching frequency	¹⁾ f_{S_max} / kHz	tbd	8	8	8	8
Min. switching frequency	¹⁾ f_{S_min} / kHz	1,25	1,25	1,25	1,25	1,25
Max. heat sink temperature 1	$T_{HS1} / ^\circ\text{C}$	tbd	70	70	78	76
Max. heat sink temperature 2	$T_{HS2} / ^\circ\text{C}$	tbd	73	73	73	73
Max. heat sink temperature 3	$T_{HS3} / ^\circ\text{C}$	tbd	69	69	73	76
Max. interior temperature power unit 1	$T_{ID_PU1} / ^\circ\text{C}$	tbd	65	65	65	65
Max. interior temperature power unit 2	$T_{ID_PU2} / ^\circ\text{C}$	tbd	75	75	80	80
Max. interior temperature power unit 3	$T_{ID_PU3} / ^\circ\text{C}$	tbd	90	90	90	90
Temperature for derating the switching frequency	²⁾ $T_{DR} / ^\circ\text{C}$	tbd	60	60	68	70
Temperature for uprating the switching frequency	²⁾ $T_{UR} / ^\circ\text{C}$	tbd	50	50	58	65
Temperature for switching to rated switching frequency	²⁾ $T_{EM} / ^\circ\text{C}$	tbd	65	65	73	73

Table 28: Switching frequency and temperature for fluid cooler (water)

¹⁾ The output frequency should be limited in such a way that it does not exceed 1/10 of the switching frequency.

²⁾ The switching point refers to the temperature of T_{HS1}

3.3.2 DC link / braking transistor function

Activation of the braking transistor function

To be able to use the braking transistor, the function must be activated with parameter "is30 braking transistor function".

For more information => [F6 Programming manual](#).

NOTICE

Falling below the minimum braking resistor value!

Destruction of the drive controller

- The minimum brake resistance value must not fall below!

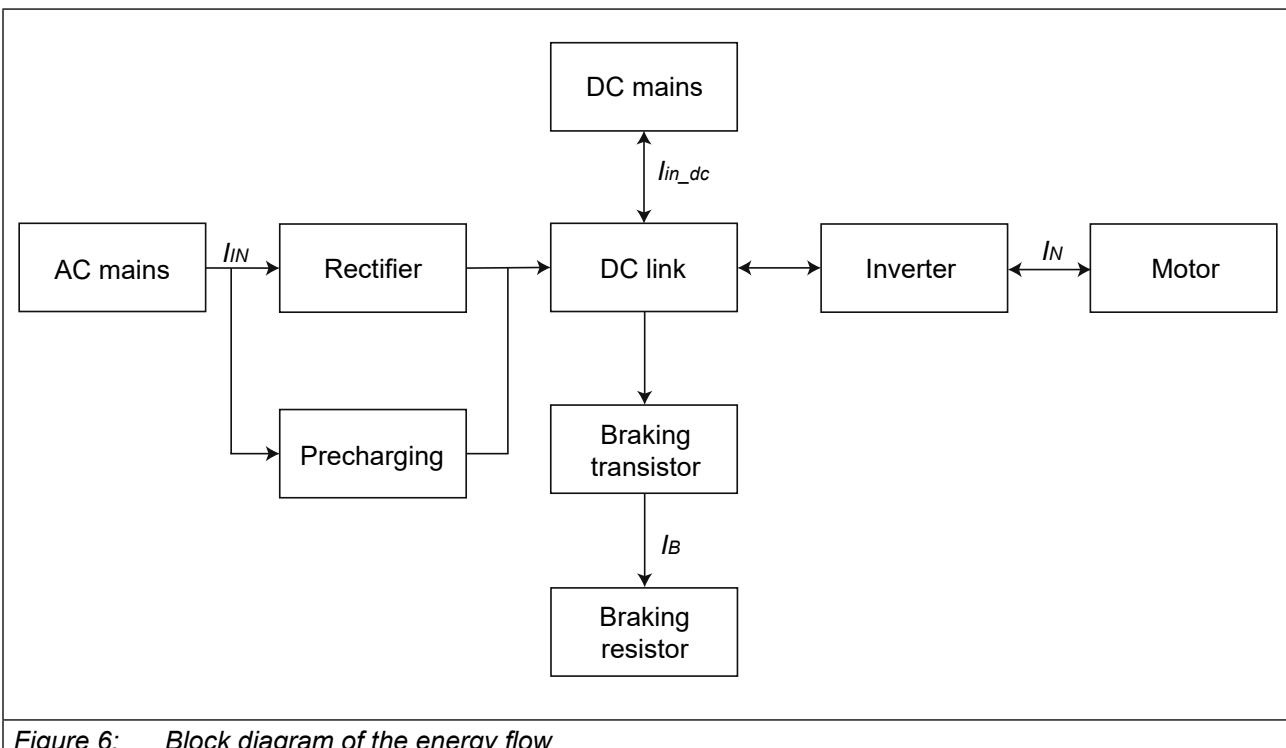


Figure 6: Block diagram of the energy flow

NOTICE

Destruction of the drive controller!

If the error "ERROR GTR7 always ON" occurs, the current consumption is switched off internally via the mains input bridge of the AC supply.

- If the error "ERROR GTR7 always ON" occurs, the drive controller is defective and must be disconnected from the power supply no later than 16 hours!
- With DC mains connection and the use of non-intrinsically safe braking resistors or sub-mounted braking resistors, the drive controller must be de-energised after 1 second at the latest.

3.3.2.1 DC link / braking transistor function

Device size		27	28	29	30
Rated DC link voltage @ $U_N = 400V$	U_{N_dc} / V		565		
Rated DC link voltage @ $U_{N_UL} = 480V$	$U_{N_dc_UL} / V$		680		
DC link voltage working voltage range	U_{IN_dc} / V		390...780		
DC switch-off level "ERROR underpotential"	U_{UP} / V		240		
DC switch-off level "ERROR overpotential"	U_{OP} / V		840		
DC switch-off level braking resistor	¹⁾ U_B / V		780		
Max. braking current	I_{B_max} / A		380		
Min. braking resistor value	R_{B_min} / Ω		2,2		
Braking transistor	²⁾		Max. cycle time: 120s; Max c.d.f.: 50 %		
Protective function for braking transistor			Short-circuit monitoring		
Protection function braking resistor (Error GTR7 always on)	³⁾		Feedback signal evaluation and current shutdown (only for AC connection)		
DC link capacity	$C_{int} / \mu F$	9900	11700	15600	18600
Max. prechargeable total capacity @ $U_N = 400V$	$C_{pc_max} / \mu F$	51300	51300	51300	51300
Max. prechargeable total capacity @ $U_{N_UL} = 480V$	$C_{pc_max_UL} / \mu F$	35600	35600	35600	35600

Table 29: DC link / braking transistor function of the 400 V devices

¹⁾ The DC switching level for the braking transistor is adjustable. The default value is the value specified in the table.

²⁾ The cyclic duration factor is additionally limited by the used braking resistor.

³⁾ The feedback signal evaluation monitors the functionality of the braking transistor. The power is switched off via the internal mains input bridge of the AC supply. There is no current switch-off with DC voltage supply.

3.3.3 Sub-mounted braking resistors

Technical data of the sub-mounted braking resistors		
Braking resistor value	R / Ω	2,25
Rated power	P_D / W	2120
Duty cycle referring to 120s @ $U_{N_dc} = 780V$	$duty cycle / s$	0,62

Table 30: Sub-mounted braking resistors

NOTICE

Observe the power dissipation of the sub-mounted braking resistors.

In braking mode with sub-mounted braking resistors, the power to be dissipated of the heat sink will be increased.

- ▶ Consider the power dissipation of the braking resistors when designing the cooling system.

3.3.4 Fan

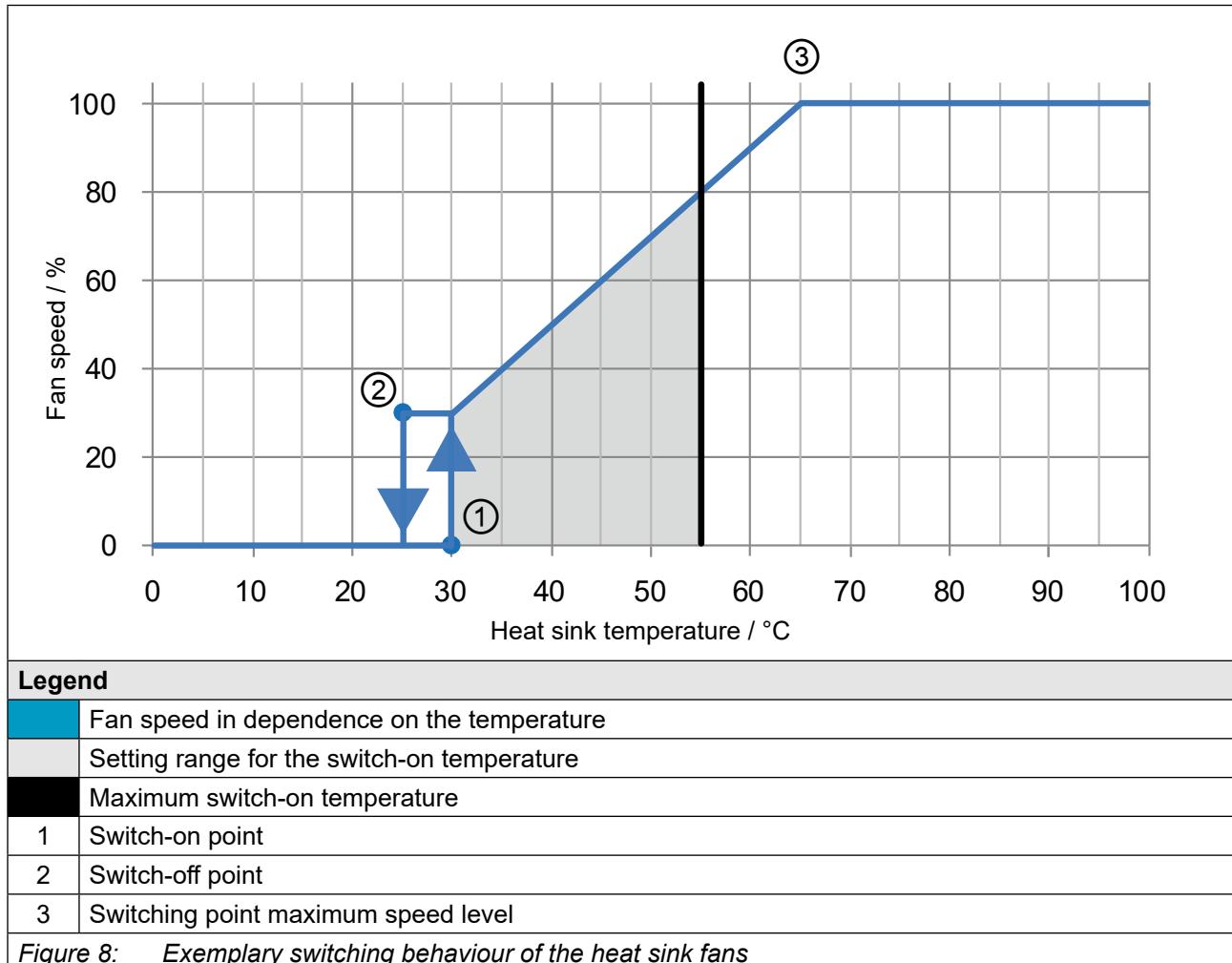
Device size		27	28	29	30
Interior fan	Number		2		
	Speed-variable		yes		
Heat sink fan ¹⁾	Number		2		
	Speed-variable		yes		

Figure 7: Fan

¹⁾ Observe external heat sink fan supply => „5.3.7 External heat sink fan supply (FAN)“

The fans are speed-variable. They are automatically controlled to high or low speed depending on the setting of the temperature limits in the software.

NOTICE


Destruction of the fans!

- Take care that no foreign substances drop into the fan!

GENERAL ELECTRICAL DATA

3.3.4.1 Switching behaviour of the fans

The temperature monitoring controls the fans with different switching on and off points.

3.3.4.2 Switching points of the fans

The switching point for the switch-on temperature and the maximum speed level of the fans are adjustable. The following table shows the default values.

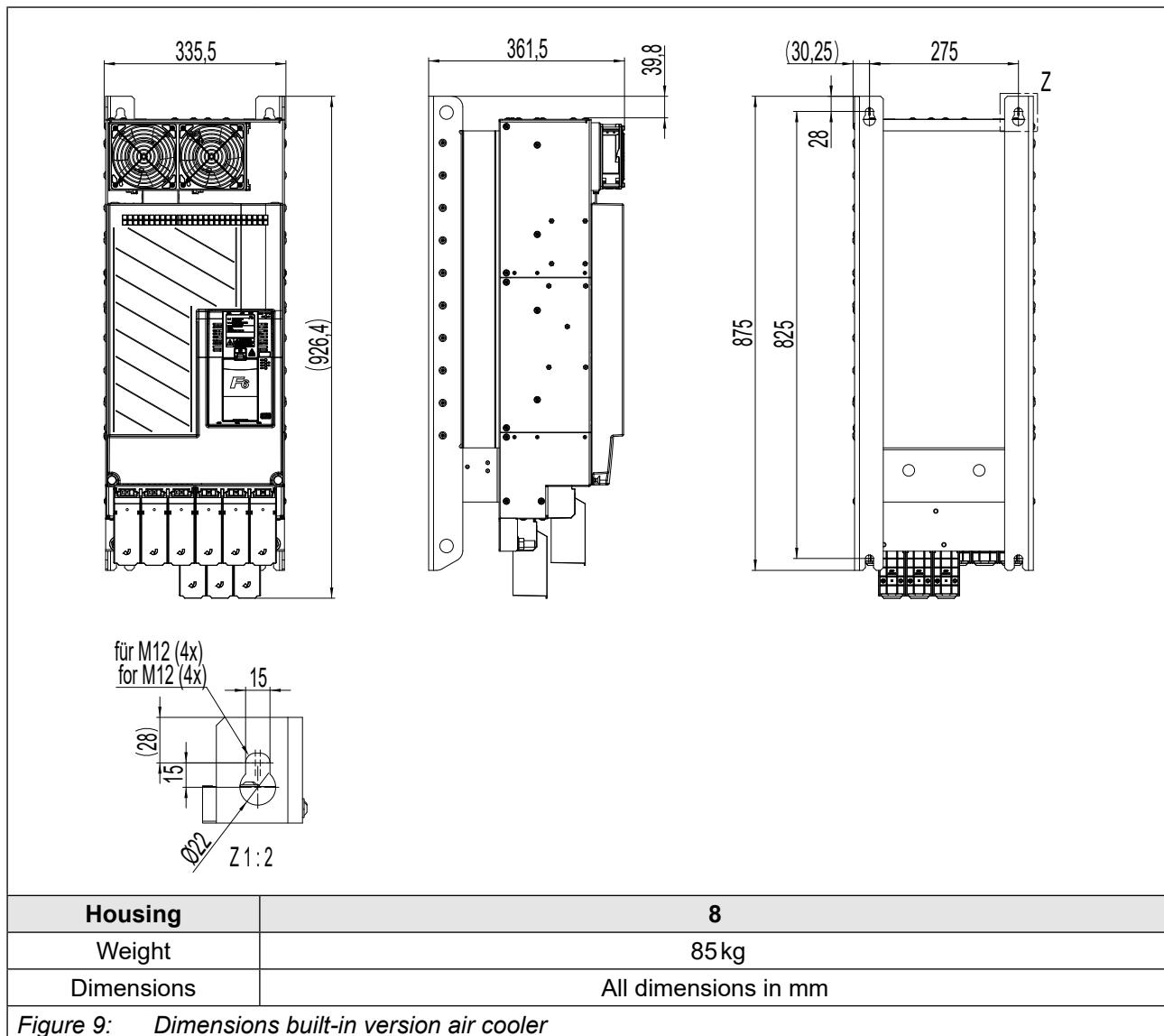
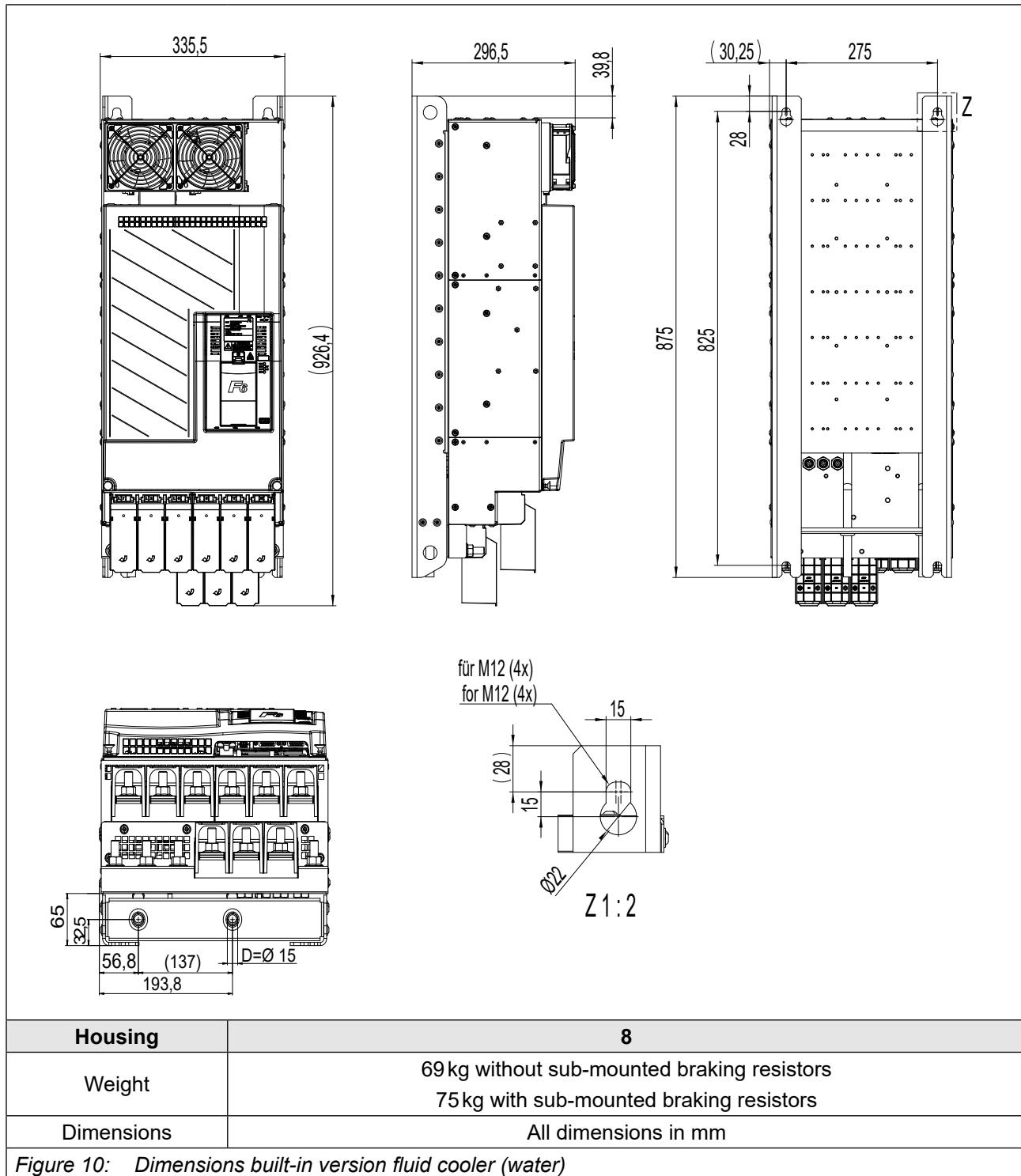
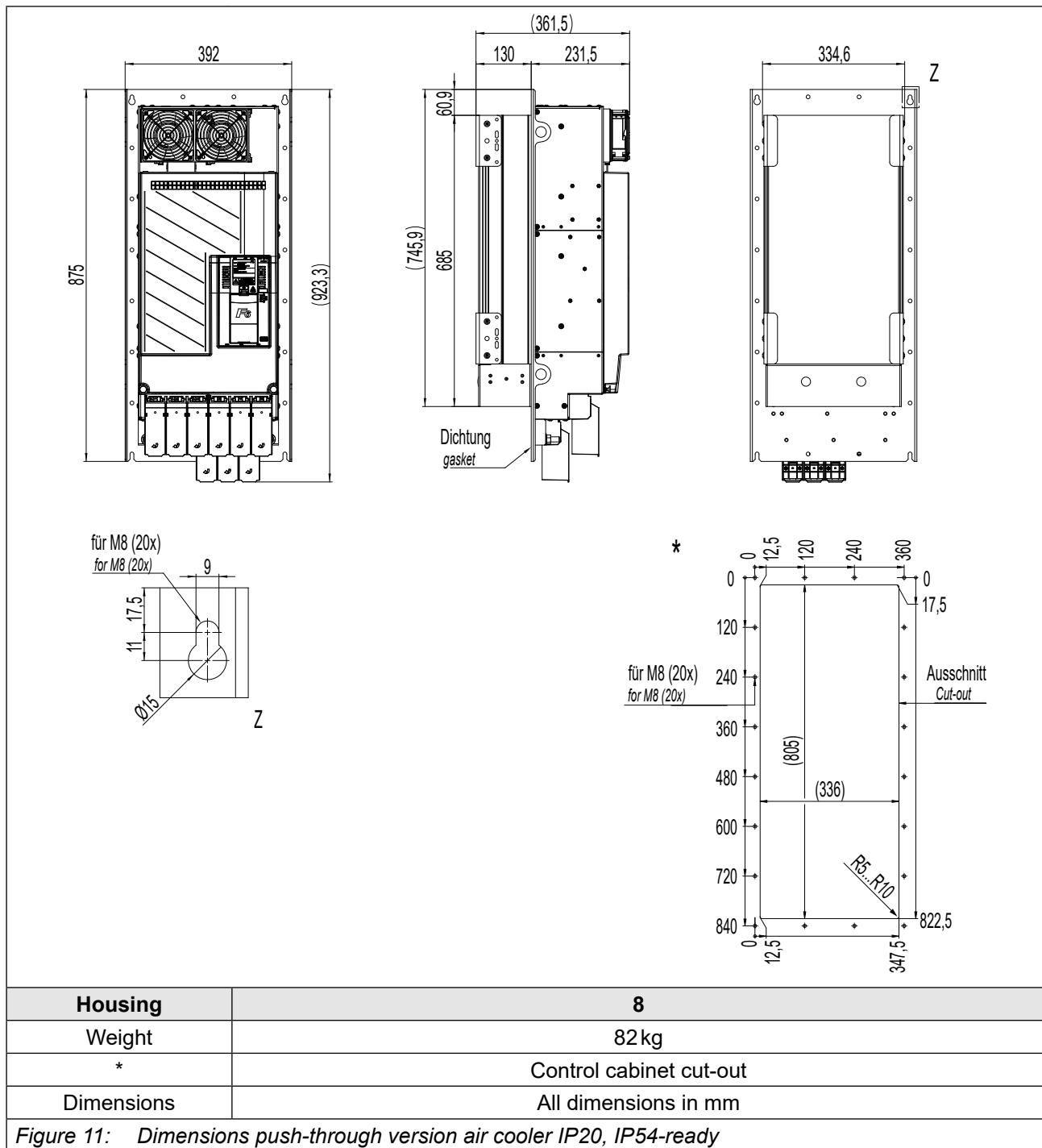

Fan	Heat sink	Interior
Switch-on temperature $T / ^\circ\text{C}$	30	20
Maximum speed level $T / ^\circ\text{C}$	65	40

Table 31: Switching points of the fans

4 Installation

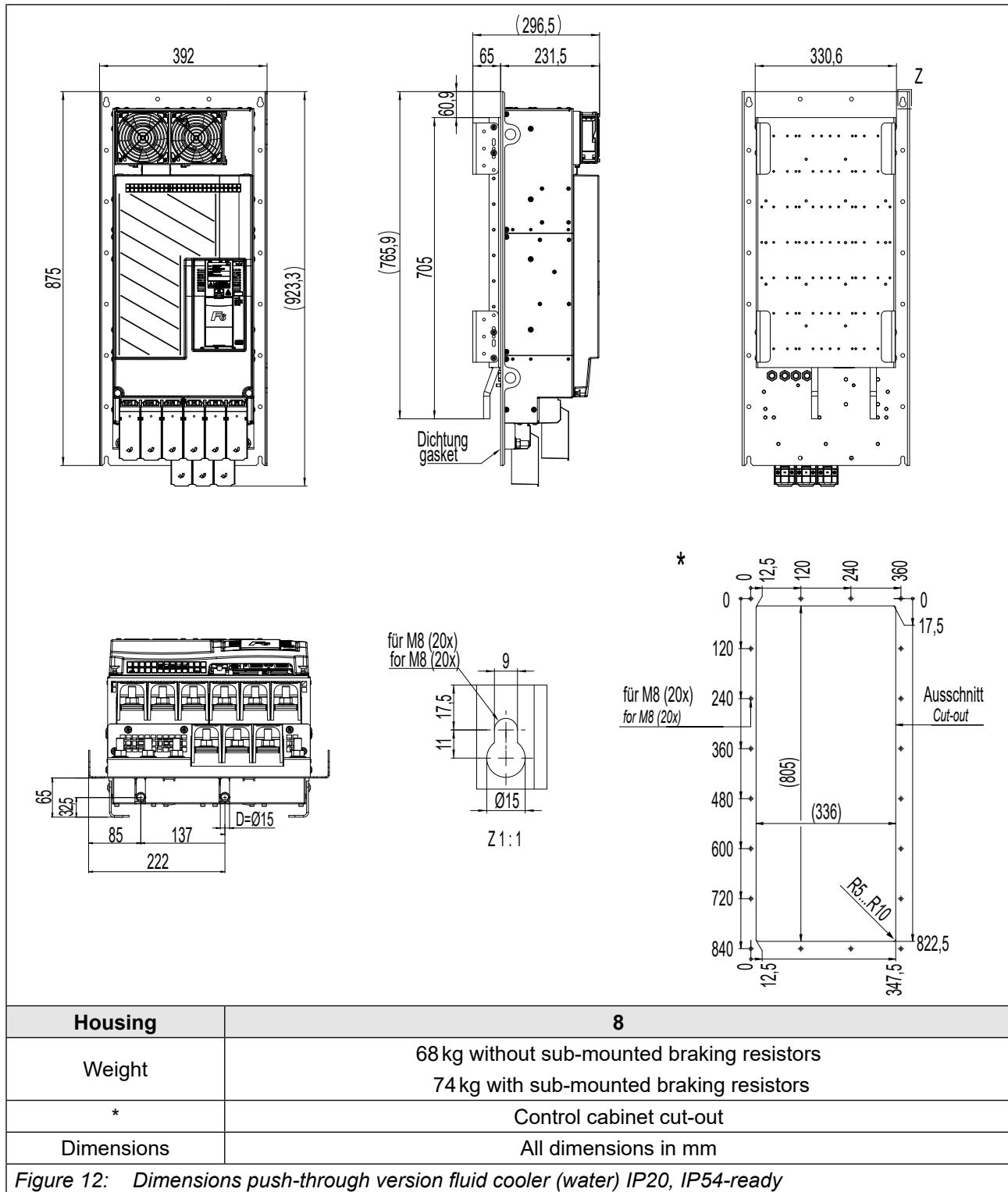

4.1 Dimensions and weights

4.1.1 Built-in version air cooler



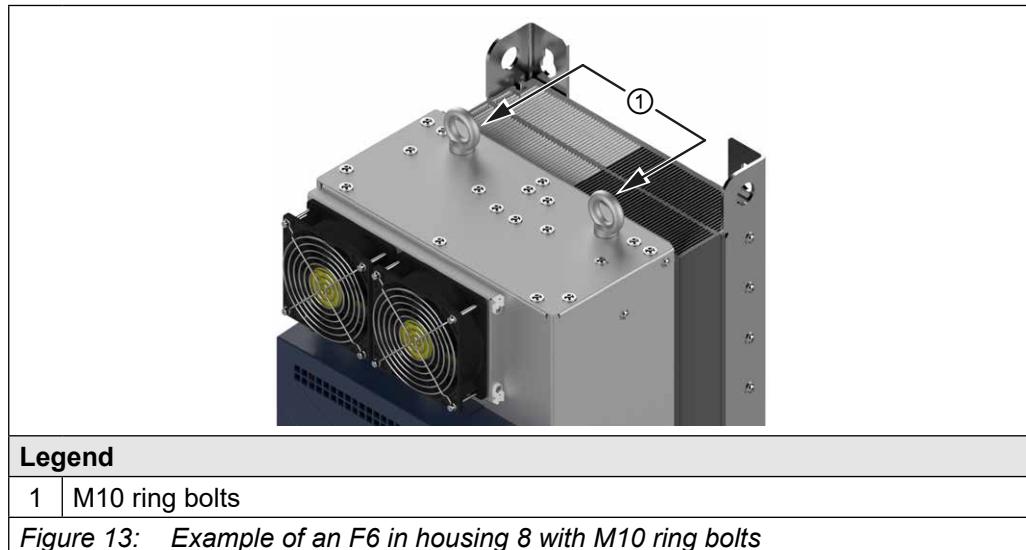
DIMENSIONS AND WEIGHTS

4.1.2 Built-in version fluid cooler (water)



4.1.3 Push-through version air cooler IP20, IP54-ready

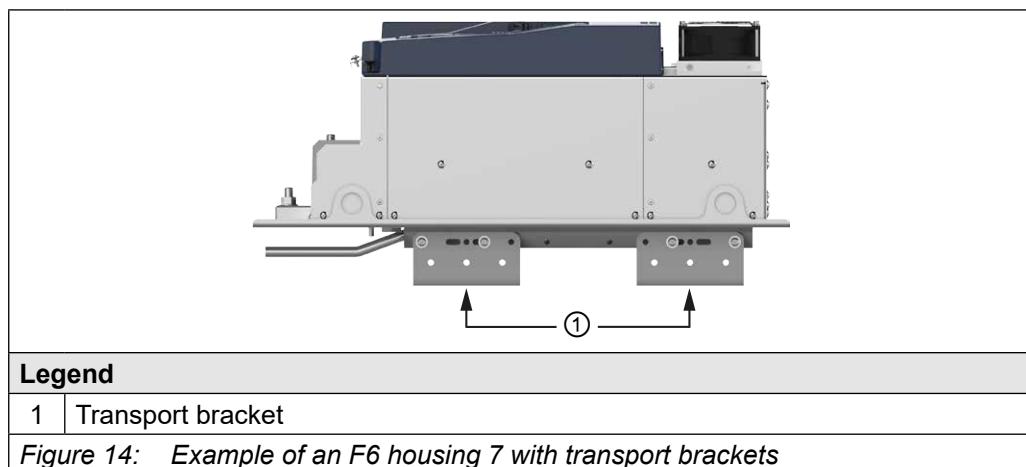
DIMENSIONS AND WEIGHTS


4.1.4 Push-through version fluid cooler (water) IP20, IP54-ready

4.2 Control cabinet installation

4.2.1 Control cabinet installation

Drive controllers in housings 7, 8 and 9 have 2 threaded bushes for M10 ring bolts according to [DIN 580](#) on the top. These are used to accommodate appropriate lifting devices for transport.


4.2.2 Devices with transport bracket

The transport bracket can be removed after mounting the drive controller. The transport brackets must be stored to make the drive controller transportable again in case of service.

NOTICE

Damage caused by improper mounting

- The transport brackets must not be used to fasten the drive controller!

NOTICE

Damage to the water connections

Bending of the tubes!

- Never set the device down or transport it without the transport brackets!

DIMENSIONS AND WEIGHTS

4.2.3 Mounting instructions

For mounting the drive controllers, the following mounting materials were tested with the corresponding quality by KEB.

Required material	Tightening torque
Hexagon-head screw ISO 4017 - M12 - 8.8 galvanised	80 Nm 705 lb inch
Flat washer ISO 7090 - 12 - 200 HV galvanised	—

Table 32: *Mounting instructions for built-in version*

Required material	Tightening torque
Hexagon-head screw ISO 4017 - M8 - 8.8 galvanised	22 Nm 190 lb inch
Flat washer ISO 7090 - 8 - 200 HV galvanised	—

Table 33: *Mounting instructions for push-through version*

NOTICE

Use of other mounting material

- The alternatively selected mounting material must comply with the above-mentioned material characteristics (quality) and tightening torques!

The use of other mounting materials is beyond the control of KEB and is therefore the sole responsibility of the customer.

4.2.4 Mounting distances

Power dissipation for the control cabinet dimension => [3.2.5 Power dissipation at rated operation for 400 V devices](#). A lower value can be used here depending on the operating mode/load.

Achieve maximum cooling capacity

For maximum cooling capacity (volume flow), the drive controller must be mounted without clearance on a smooth, closed mounting plate.

Mounting distances	Dimen-sion	Distance in mm	Distance in inch
A	150	6	
B	100	4	
C	30	1,2	
D	0	0	
E	0	0	
F ¹⁾	50	2	

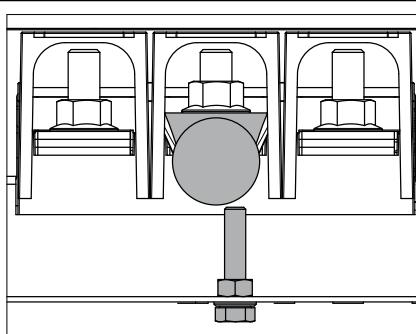
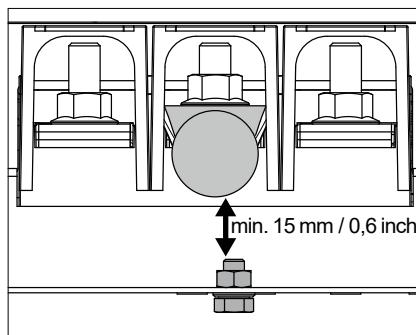
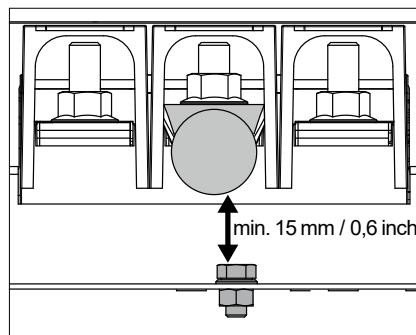
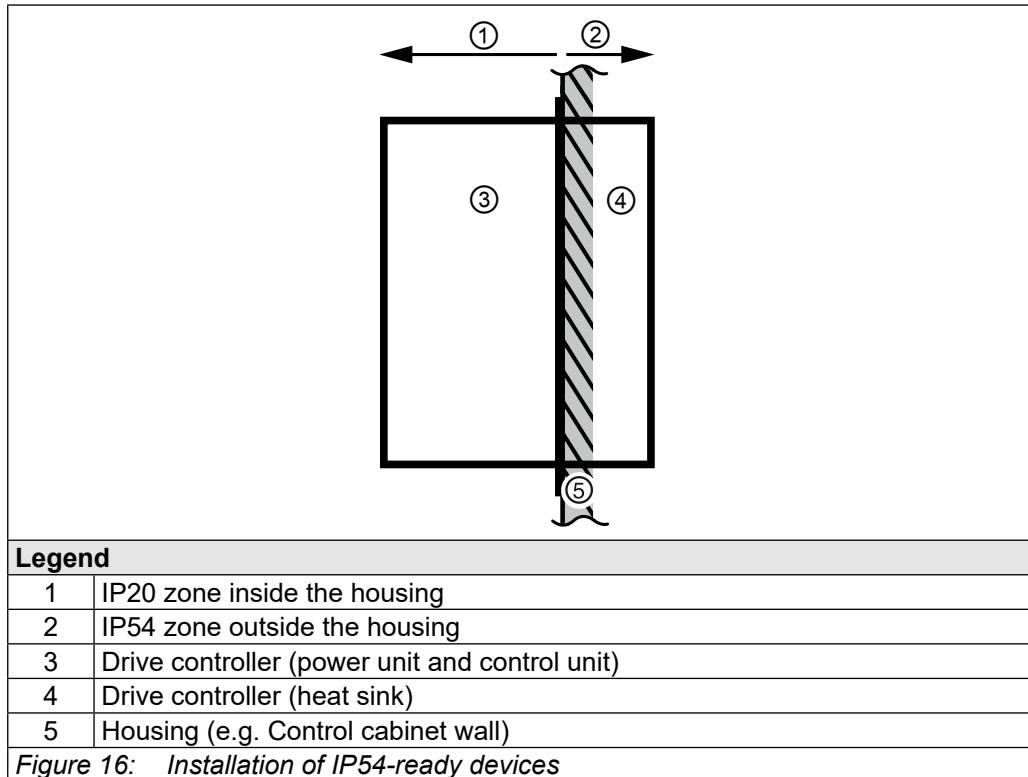



¹⁾ Distance to preceding elements in the control cabinet door.

Figure 15: Mounting distances


NOTICE

Voltage flashover!

- Observe screw length for push-through version!
- Maintain an insulation distance of at least 15 mm (0.6 inch) between conductor and screw!

4.2.5 Installation of IP54-ready devices

IP54 zone: Heat sink outside the housing

The protection class IP54 can only be achieved when the device is properly installed.

For proper installation, a suitable IP54 seal (=> „[5.4.2 Seal for IP54-ready devices](#)“) must be installed between heat sink and housing (e.g. control cabinet wall).

The tightness must be checked after the installation. If properly installed, the separation to the housing corresponds to degree of protection IP54.

In the case of fan-cooled units, the fans must be protected from negative environmental influences.

These include combustible, oily or dangerous fumes or gases, corrosive chemicals, coarse foreign bodies and excessive dust. This applies especially to the access of the heatsink from the top (air outlet). Icing is inadmissible.

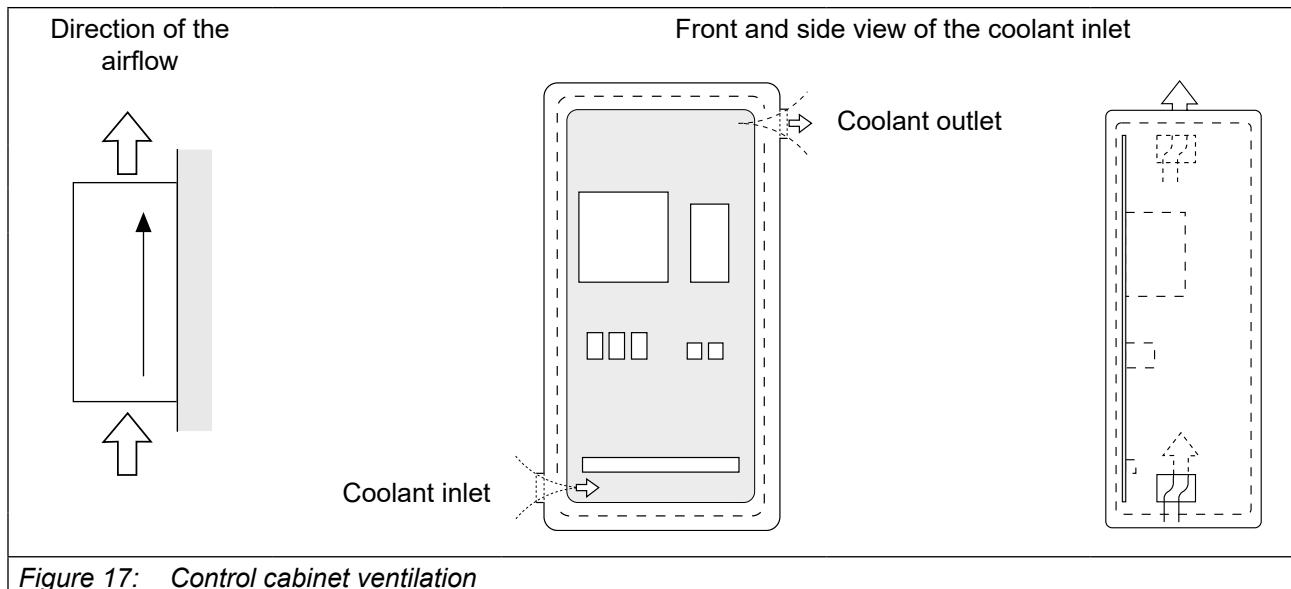
UL: Device heat sink is classified as NEMA type 1

IP20 zone: Device inside the housing

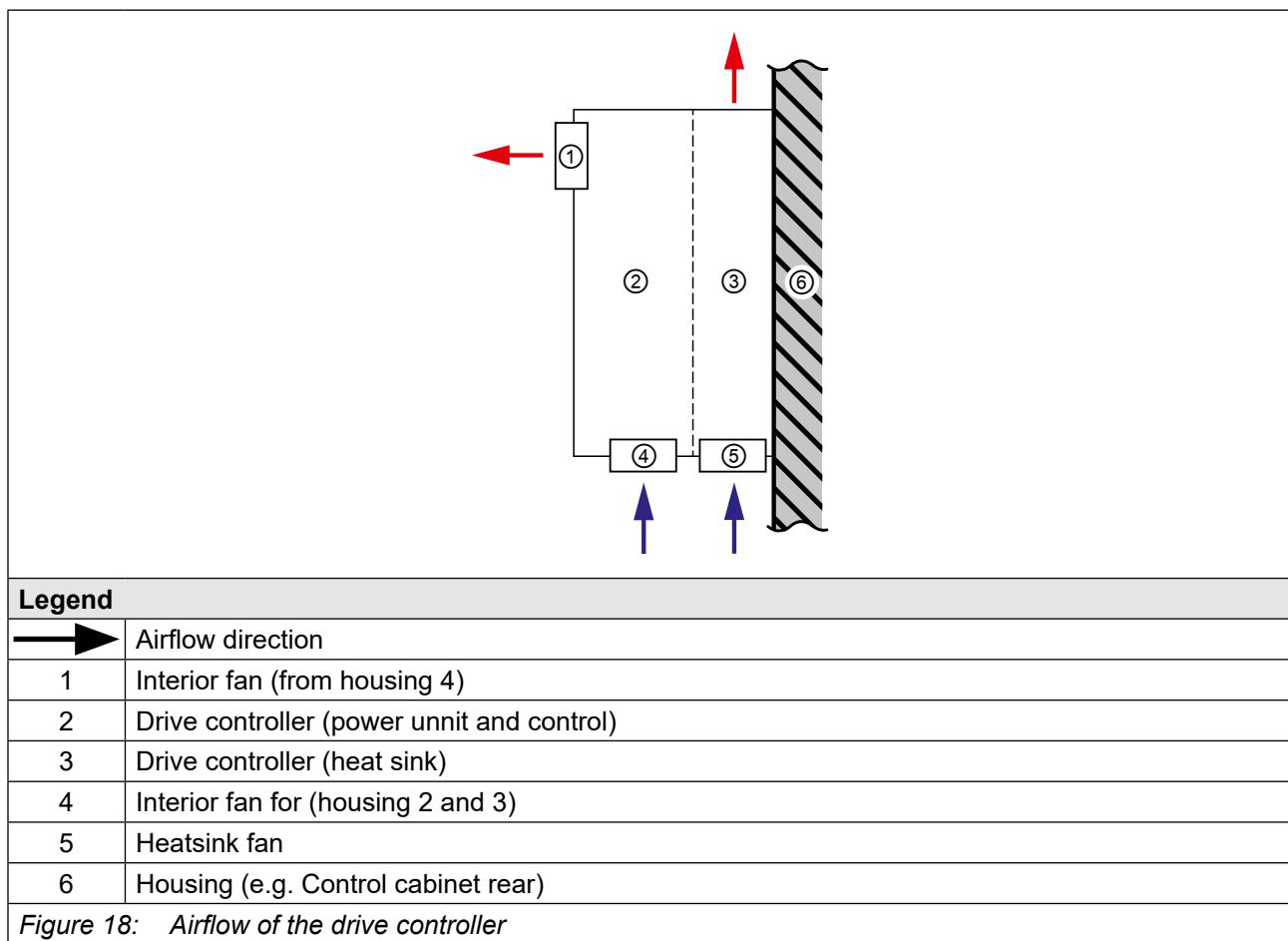
This part is intended for the installation in a suitable housing for the required degree of protection (e.g. control cabinet).

The power connections are excluded => „[3.1.1 Climatic environmental conditions](#)“.

NOTICE


Defect due to continuous splash water !

- ▶ Never expose the device to continuous splashing water (e.g. direct exposure to rain)!


DIMENSIONS AND WEIGHTS

4.2.6 Control cabinet ventilation

If construction-conditioned the control cabinet cannot be without indoor ventilation, appropriate filters must avoid suction of foreign objects.

4.2.7 Airflow of the drive controller

5 Installation and connection

5.1 Overview of the COMBIVERT F6

Housing 8		No.	Name	Description
	1	1	---	Interior fan
	2/6	---	---	Shield terminals for shielded control cables
	3	FAN	External heat sink fan supply ¹⁾	
	4	---	Nameplate	
	5	---	LEDs (see the manual for control unit chapter "Overview")	<ul style="list-style-type: none"> For control card COMPACT: FS without function. For control card APPLICATION and PRO: Status indication of the safety module
	7	X1A	Power circuit terminals for:	<ul style="list-style-type: none"> Mains input Braking resistor DC voltage interface Motor connection
	8	PE	Protective earth; at connection to protective earth each terminal may be assigned only once	
	8			

Figure 19: F6 housing 8 top view

¹⁾ Observe external heat sink fan supply => „5.3.7 External heat sink fan supply (FAN)“

OVERVIEW OF THE COMBIVERT F6

Housing 8		No.	Name	Description
		6	---	Shield terminals for shielded control cables
		7	X1A	Power circuit terminals for: <ul style="list-style-type: none"> • Mains input • Braking resistor • DC voltage interface • Motor connection
		8	PE	Protective earth; at connection to protective earth each terminal may be assigned only once
		9	X1C	Terminal for: <ul style="list-style-type: none"> • Motor temperature monitoring • Brake control
		10	X3A	Encoder interface channel A
		11	X3B	Encoder interface channel B
		12	---	Heat sink fan

Figure 20: F6 housing 8 front view

Housing 8		No.	Name	Description
13	14 15	1	---	Interior fan
16	17	2	---	Shield terminals for shielded control cables
	18	13	S1	Rotary coding switch A
		14	S2	Rotary coding switch B
		15	X4C	Fieldbus interface (out)
		16	X4B	Fieldbus interface (in)
		17	X2B	Safety module
		18	X2A	Control terminal block for <ul style="list-style-type: none"> • CAN bus • Analog inputs and analog output • Digital inputs and outputs • 24 V DC voltage supply

Figure 21: F6 housing 8 rear view with control board APPLICATION

Further information can be found in the respective control board manual.

Instructions for use COMBIVERT F6 control board APPLICATION
www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_en.pdf

Instructions for use COMBIVERT F6 control board COMPACT
www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_en.pdf

Instructions for use COMBIVERT F6 control board PRO
www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_en.pdf

CONNECTION OF THE POWER UNIT

5.2 Connection of the power unit

NOTICE

Destruction of the drive controller!

- Never exchange mains input and motor output!

5.2.1 Connection of the voltage supply

The COMBIVERT F6 can be supplied via terminals L1, L2 and L3 (AC power supply) or via terminals + and - (DC power supply with inrush current limitation)

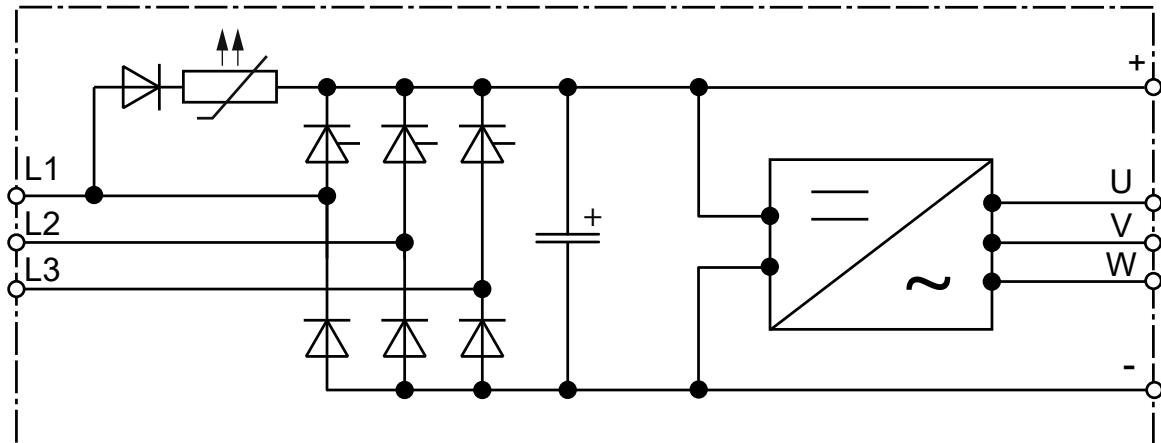
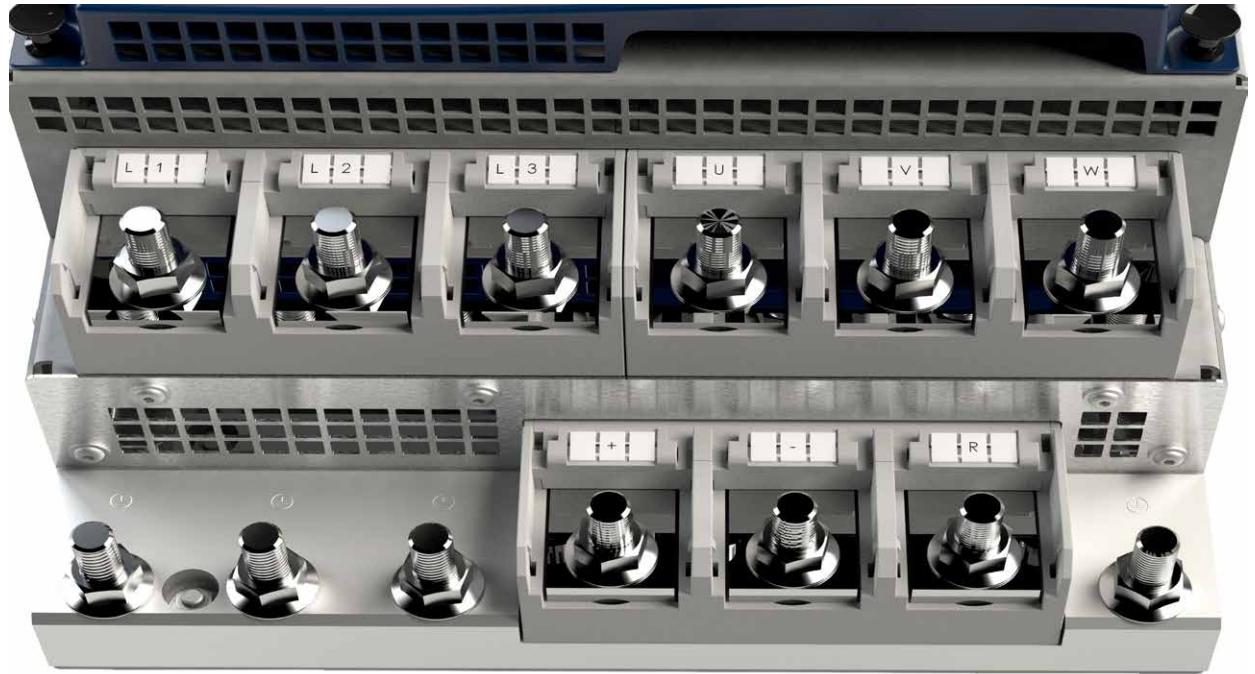


Figure 22: Input circuit

NOTICE

With AC power supply, observe the minimum waiting time between two switch-on procedures!

Cyclical switching off and on of the drive controller leads to temporary high impedance of the PTC precharging resistor. After the PTC precharging resistor has cooled down, it can be restarted without restrictions. The waiting time between two switch-on processes depends on the external capacitance, the AC mains voltage and the ambient temperature.


- Without external capacity: 5 min
- With external capacity (additional drive controllers): 20 min

NOTICE

No inrush current limitation with DC power supply!

- An external inrush current limiter must be provided for DC power supplies.

5.2.1.1 Terminal block X1A for 400 V devices

Name	Function	Terminal connection	Tightening torque	Max. number of conductors			
L1	Mains connection 3-phase	12 mm stud for M12 crimp connector	35 Nm 310 lb inch	2			
L2							
L3							
U	Motor connection						
V							
W							
+	DC terminals						
-							
R	Connection for braking resistor (between + and R)						

Figure 23: Terminal block X1A for 400 V devices

CONNECTION OF THE POWER UNIT

5.2.2 Protective earth and function earth

Protective and functional earth must not be connected to the same terminal.

5.2.2.1 Protective earth

The protective earth (PE) serves for electrical safety particularly personal protection in error case.

⚠ CAUTION

Electric shock due to incorrect dimensioning!

- The earthing cross-section is in accordance with [VDE 0100](#) !

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
	Connection for protective earth	12 mm threaded pin for M12 crimp connectors	35 Nm 310 lb inch	1

Figure 24: Connection for protective earth

Incorrect assembly of the PE connection

Pre-mounted M12 screws and M12 nuts with flange must be used to attach the PE tubular cable lugs.

5.2.2.2 Functional earthing

A functional earthing may also be necessary, if for EMC requirements additional potential equalization between devices or parts of the system must be available.

The use of the functional earth (FE) is not required if the frequency inverter is EMC-technically wired.

The functional earth may not be wired green/yellow!

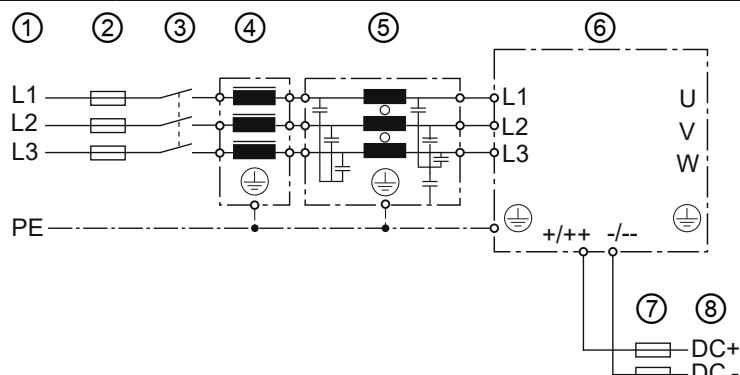
Notes on EMC-compatible installation can be found here.

www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

5.3 Mains connection

5.3.1 Supply cable

The conductor cross-section of the supply cable is determined by the following factors:


- Input current of the drive controller
- Used line type
- Installation and ambient temperatures
- The locally valid electrical regulations

The application engineer is responsible for the design!

5.3.2 AC mains connection

5.3.2.1 AC supply 3-phase

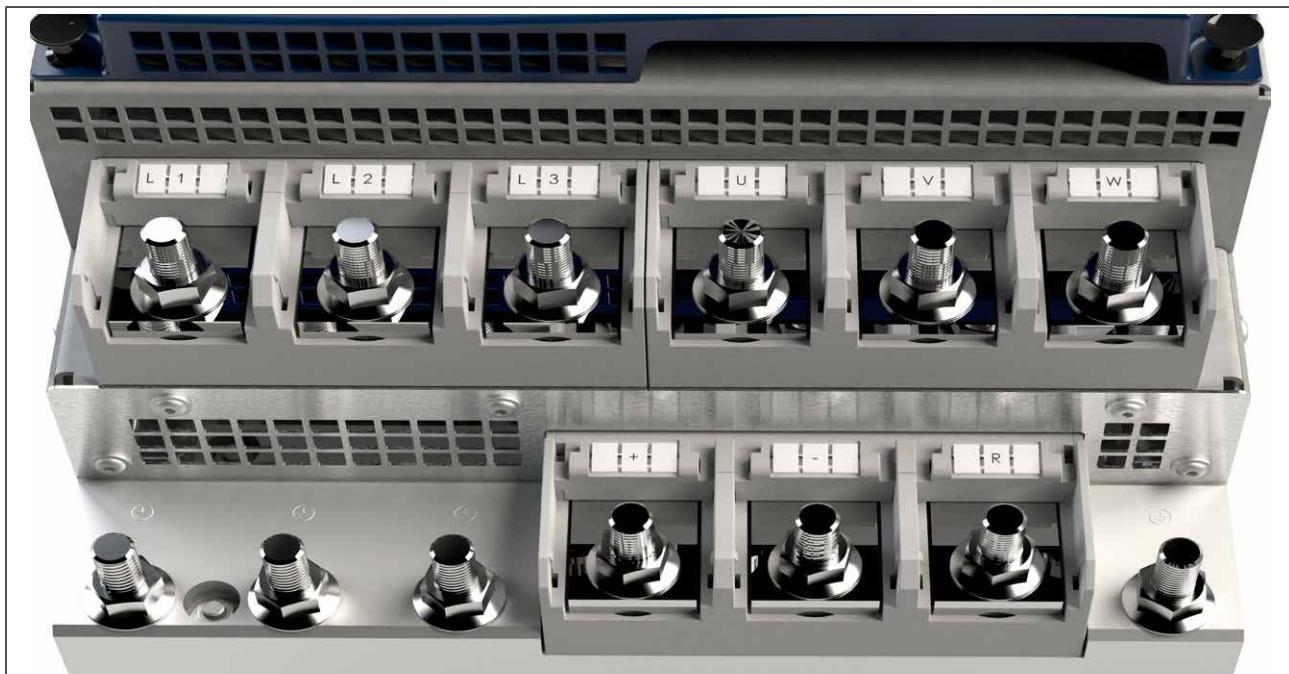

No.	Type	Description	
1	Mains phase	3-phase	
	Mains form	TN, TT	IT
		The rated voltage between one phase conductor and earth potential (or the neutral point in the IT system) must not exceed 300V, USA UL: 480 / 277V. (For the IT system, a short-term disconnection must be ensured).	
	Personal protection	RCMA with separator or RCD type B	Insulation monitors
2	Mains fuses	see chapter "Protection of the drive controllers"	
3	Mains contactor	-	
4	Mains choke	see notes in chapter "Filters and chokes"	
5	HF filter for TN-, TT systems	Required for compliance with the limit values in accordance with EN 61800-3 .	
	HF filter for IT systems		
6	Drive controller	COMBIVERT F6	
7	DC-fuses	See note in chapter „Fusing of the devices“.	
8	DC-supply	DC supply generated by the drive controller for connecting further drive controllers => „ 5.3.3 DC mains connection “	

Figure 25: Connection of the mains supply 3-phase

MAINS CONNECTION

5.3.3 DC mains connection

5.3.3.1 Terminal block X1A DC connection

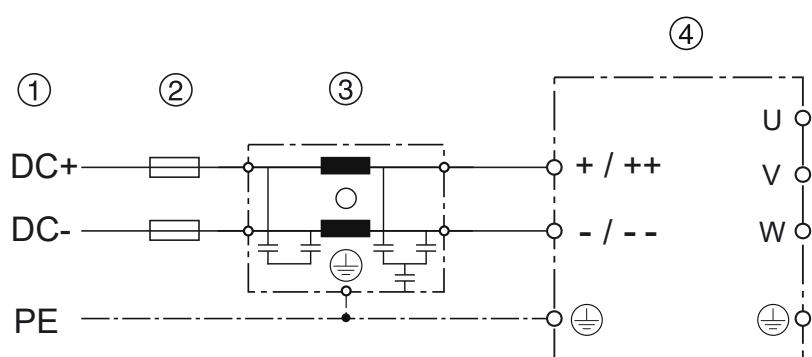

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
+	DC terminals	12 mm stud for M12 crimp connector	35 Nm	2
-			310 lb inch	

Figure 26: Terminal block X1A DC connection

5.3.3.2 Connection at DC voltage supply

NOTICE**Destruction of the drive controller!**

► Never exchange “+ / ++” and “- / --”!

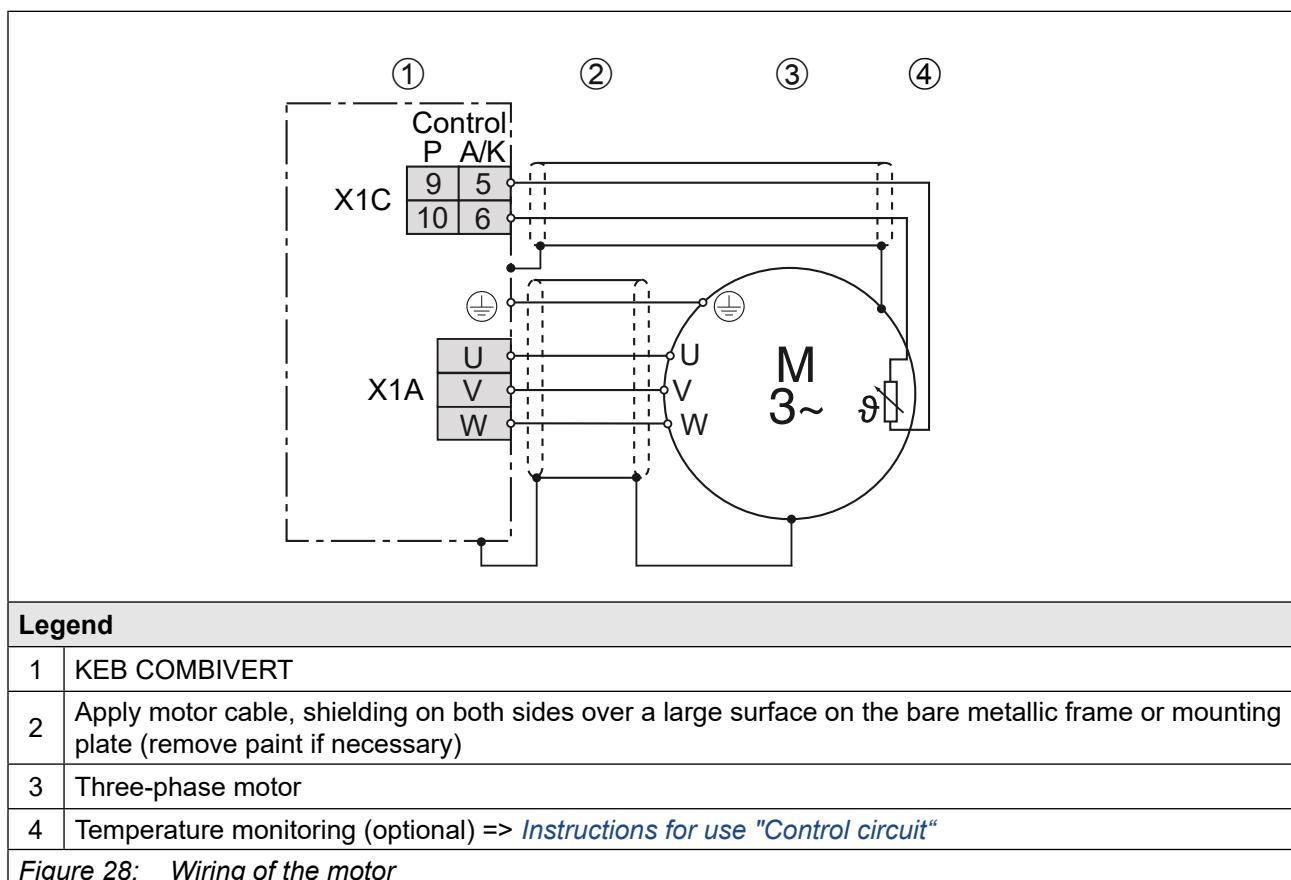
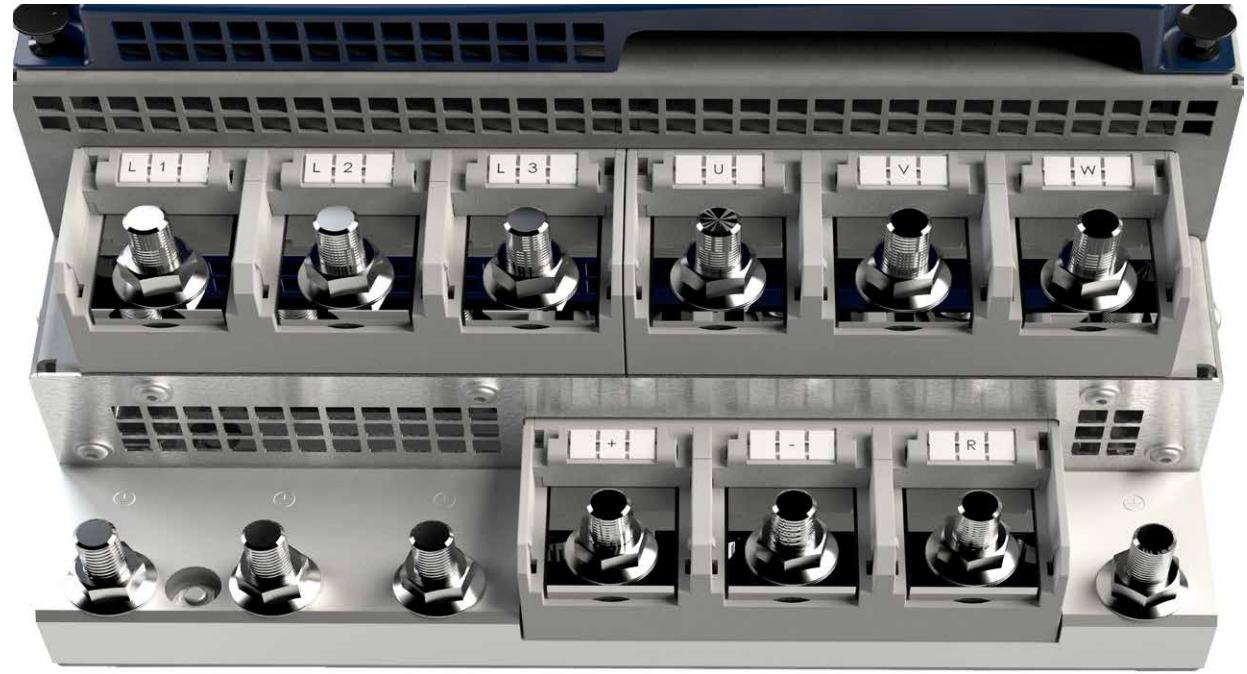

No.	Type	Description
1	Mains connection	2-phase
2	DC mains fuses	See note in chapter “Fuse protection for DC-supply”
3	HF-Filter	Type aR
4	Drive controller	COMBIVERT F6

Figure 27: Connection at DC voltage supply


MAINS CONNECTION

5.3.4 Connection of the motor

5.3.4.1 Wiring of the motor

5.3.4.2 Terminal block X1A motor connection

A photograph of a KEB X1A terminal block. The top section shows three main input terminals labeled L1, L2, and L3, and three motor connection terminals labeled U, V, and W. The bottom section shows three neutral terminals labeled N1, N2, and N3, and three ground terminals labeled PE1, PE2, and PE3. The terminals are silver-colored metal studs. The block is made of a light-colored metal and has a perforated top and bottom for ventilation.

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
U	Motor connection	12 mm stud for M12 crimp connector	35 Nm 310 lb inch	2
V				
W				

Figure 29: Terminal block X1A motor connection

MAINS CONNECTION

5.3.4.3 Selection of the motor line

The correct cabling as well as the motor line itself play an important part in case of low power in connection with long motor line lengths. Low-capacitance line (phase/phase $< 65 \text{ pF/m}$, phase/screen $< 120 \text{ pF/m}$) at the inverter output have the following effects:

- allow major motor line lengths („[5.3.4.4 Motor cable length and conducted interferences at AC supply](#)“)
- better EMC properties (reduction of the common-mode output currents to earth)

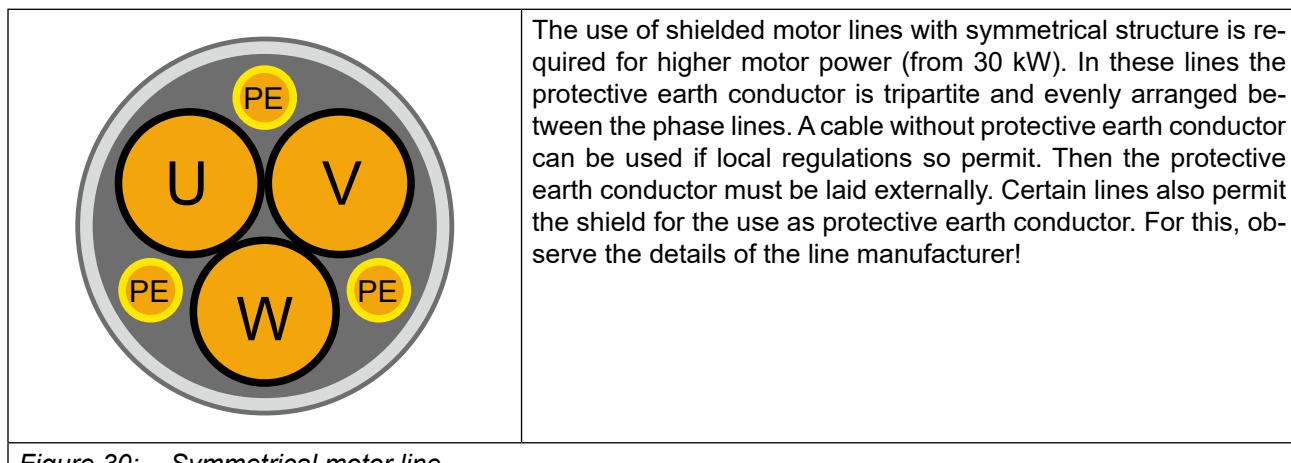


Figure 30: Symmetrical motor line

5.3.4.4 Motor cable length and conducted interferences at AC supply

The maximum motor cable length is depending on the capacity of the motor cable as well as on the EMC emitted interference. External measures must be taken here (e.g. the use of a line filter).

The cable length can be increased significantly by using motor chokes or motor filters. KEB recommends the use of motor chokes or filters for a line length upto 25m.

Further information on the motor cable length can be found in the corresponding filter instructions.

5.3.4.5 Motor cable length for parallel operation of motors

The resulting motor cable length for parallel operation of motors, or parallel installation with multiple cables arises from the following formula:

$$\text{resulting motor cable length} = \sum \text{single line length} \times \sqrt{\text{Number of motor lines}}$$

5.3.4.6 Motor cable cross-section

The motor cable cross-section is dependent

- on the characteristic of the output current (e.g. harmonic content)
- on the real effective value of the motor current
- on the cable length
- on the type of the used cable
- on the ambient conditions such as bundling and temperature

5.3.4.7 Interconnection of the motor

NOTICE**Incorrect behaviour of the motor!**

- ▶ The connecting-up instructions of the motor manufacturer are always generally valid!

NOTICE**Protect motor against voltage peaks!**

- ▶ Drive controllers switch at the output with high dV/dt . Voltage peaks that endanger the insulation system at the motor can occur especially in case of long motor cables ($>15\text{m}$). A motor choke, a dV/dt filter or sine-wave filter can be used to protect the motor with regard to the operating mode.

MAINS CONNECTION

5.3.4.8 Connection of the temperature monitoring and brake control (X1C)

A switchable temperature evaluation is implemented in the COMBIVERT.

There are different types for the evaluation available. These are dependending on the control board => [instruction manual „control board“](#).

The desired operating mode can be adjusted via software (dr33). If the evaluation is not required, it must be deactivated via software (parameter pn12 = 7) => [Programming manual](#)

X1C	PIN	Name	Description
	1	BR+	Brake control / output +
	2	BR-	Brake control / output -
	3	reserved	—
	4	reserved	—
	5	TA1	Temperature detection / output +
	6	TA2	Temperature detection / output -

Figure 31: Terminal block X1C for control board APPLICATION and COMPACT

X1C	PIN	Name	Description
	1	BR+	Brake control / output +
	2	BR-	Brake control / output -
	3	0V	For supply of the checkback inputs
	4	24Vout	
	5	DIBR1	Checkback input 1 for brake and relay
	6	DIBR2	Checkback input 2 for brake and relay
	7	reserved	—
	8	reserved	—
	9	TA1	Temperature detection / output +
	10	TA2	Temperature detection / output -

Figure 32: Terminal block X1C for control board PRO

NOTICE

Malfunctions due to incorrect line or laying!

Malfunctions of the control due to capacitive or inductive coupling.

- ▶ Do not route cables from the motor temperature sensor (also shielded) together with control cables.
- ▶ Cables from the motor temperature sensor within the motor cables may only be used with double shielding!
- ▶ The input of the temperature detection has basic isolation.

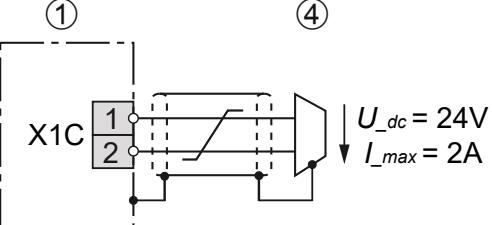

	<p>For control board APPLICATION and COMPACT. The voltage to the control of a brake is decoupled from the internal voltage supply. The brake works only with external voltage supply.</p> <p>For control board PRO The brake can be supplied with both, internal and external voltage. Voltage tolerances and output currents vary for internal and external voltage supply..</p>
1 COMBIVERT	
4 Brake	Respect the specifications => <i>instruction manual „control board“</i>

Figure 33: Connection of the brake control

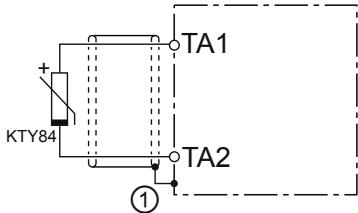

	<p>KTY sensors are polarized semiconductors and must be operated in forward direction! To this connect the anode to TA1 and the cathode to TA2! Non-observance leads to incorrect measurements in the upper temperature range. A protection of the motor winding is then no longer guaranteed.</p>
1 Connection via shield plate (if not available, place on the mounting plate).	

Figure 34: Connection of a KTY sensor

NOTICE**No protection of the motor winding in case of wrong connection.**

- ▶ Operate KTY sensors in forward direction.
- ▶ KTY sensors may not be combined with other detections.

Further information about the wiring of the temperature monitoring and the brake control have to be observed in the respective control unit manual.

5.3.5 Connection and use of a braking resistor

⚠ CAUTION

Fire risk by using brake resistors!

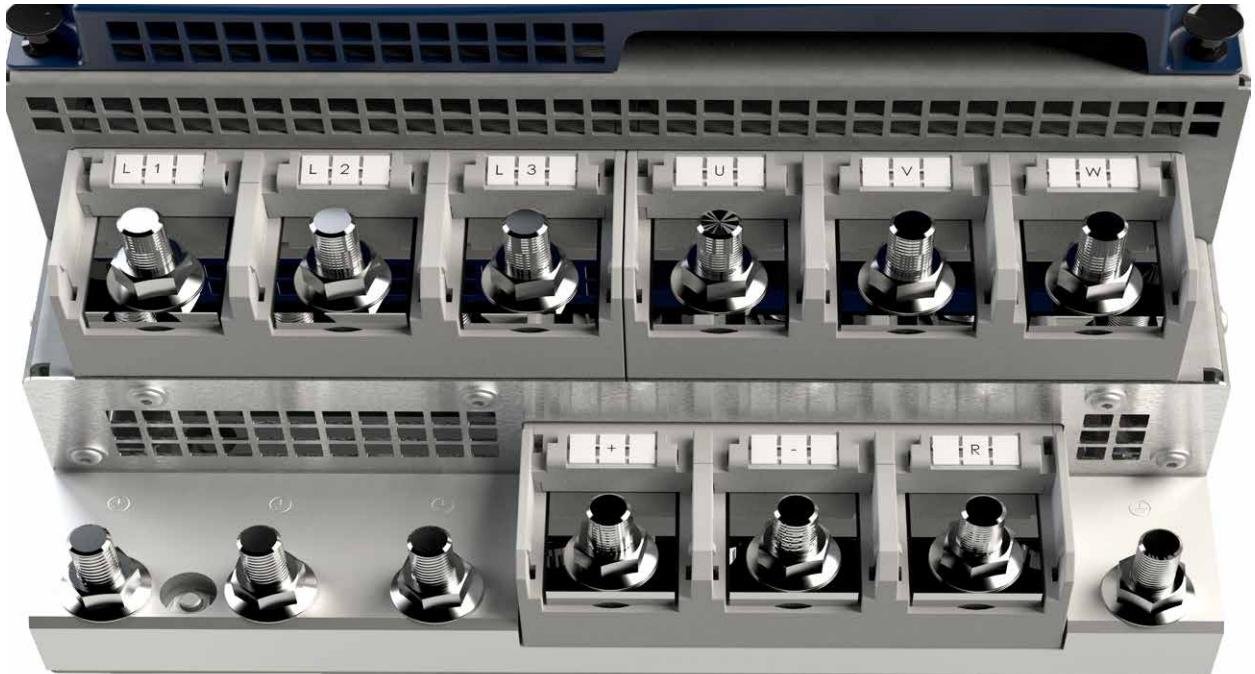
- ▶ The risk of fire can be significantly reduced by using „intrinsically safe braking resistors“ or by using suitable monitoring functions / circuits.

NOTICE

Destruction of the frequency inverter if the vale has fallen below the minimum brake resistance value!

- ▶ The minimum brake resistance value must not fall below!
„3.2 Device data of the 400 V devices“

⚠ CAUTION



Hot surfaces caused by load of the braking resistor!

Burning of the skin!

- ▶ Cover hot surfaces safe-to-touch.
- ▶ Before touching, check the surface.
- ▶ If necessary, attach warning signs on the system.

5.3.5.1 Terminal block X1A connection braking resistor

A photograph of a metal terminal block. The top row has three positions labeled L1, L2, L3. The middle row has three positions labeled U, V, W. The bottom row has three positions labeled +, -, and R. Each position contains a metal terminal with a hex nut. The block has ventilation holes on the top and bottom edges.

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
+	Connection for braking resistor (between + and R)	12 mm stud for M12 crimp connector	35 Nm 310 lb inch	2
R				

Figure 35: Terminal block X1A connection braking resistor

For devices with sub-mounted braking resistors, connection of external braking resistors to terminal R is not permitted.

5.3.5.2 Use of non-intrinsically safe braking resistors

WARNING

Use of non-intrinsically safe braking resistors

Fire or smoke emission in case of overload or error!

- ▶ Only use braking resistors with temperature sensor.
- ▶ Evaluate temperature sensor.
- ▶ Trigger an error at the drive controller (e.g. external input).
- ▶ Switch off input voltage (e.g. input contactor).
- ▶ Connection examples for non-intrinsically safe braking resistors
- ▶ => *Instructions for use "Installation braking resistors"*

Instructions for use "Installation braking resistors"

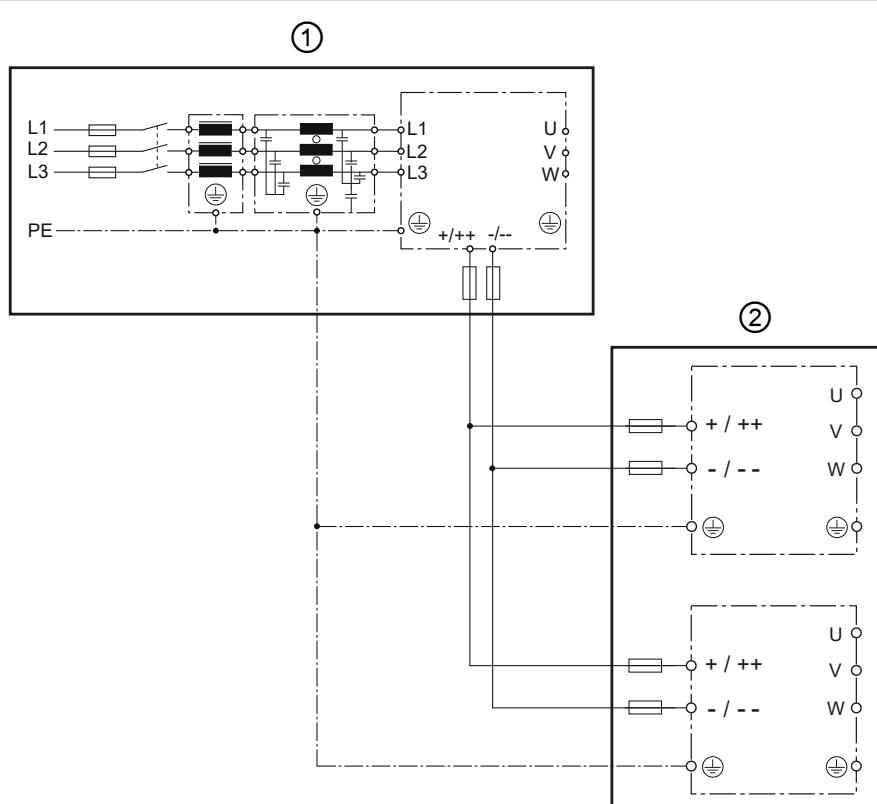
www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf

Chapter „Connection of a braking resistor with extended temperature monitoring“.

5.3.6 DC-bus connection

The DC link of several drive controllers are coupled in a DC-bus connection. This enables energy to be exchanged between the devices and increases the energy efficiency of the application.

As part of a DC-bus connection, this drive controller can either be supplied via the DC terminals => „[5.3.3 DC mains connection](#)“ or supply other drive controllers via the DC terminals => „[5.3.2 AC mains connection](#)“.



KEB drive controllers meet the requirements of the EMC product standard EN IEC 61800-3 for DC power supplies. Due to the large number of possible interconnection options in the DC network, the user is responsible for ensuring the conformity of the overall system.

The following additional safety instructions must be observed when using this drive controller in a DC-bus connection:

- This drive controller may only be operated together with other F6 and S6 drive controllers of the 400V class in a DC-bus connection.
- This drive controller must be installed in an enclosure.
- This drive controller must be protected with fuses at the DC terminals => „[3.2.6.2 Fusing for DC supply](#)“.
- If one fuse in the DC-bus connection blows as a result of a short circuit, all fuses in the DC-bus connection should be replaced due to the risk of prior damage.
- The parameterisation of the input phase failure detection must be adapted => F6 Programming manual.

MAINS CONNECTION

Legend

1	Drive controller for supplying further drive controllers
2	Other drive controllers connected to the DC-bus connection

Figure 36: DC-bus connection

① When using this drive controller to supply other drive controllers via the DC terminals, the following must also be observed:

- The maximum prechargeable total capacity (internal capacity + external capacity) must not be exceeded => „3.3.2.1 DC link / braking transistor function“.
- The minimum waiting time between two precharging procedures must be observed => „5.2.1 Connection of the voltage supply“.
- Drive controllers supplied via the DC terminals must not be loaded during precharging.
- Overloading of the rectifier must be prevented by the user => „3.2.4 Overview of rectifier data for 400 V devices“.

② When supplying this drive controller via the DC terminals, the following must also be observed:

- The drive controller must be pre-charged by the supplying drive controller or an external pre-charging module.

5.3.7 External heat sink fan supply (FAN)

The external heat sink fan supply is only available for air-cooled appliances.

The control card and the heat sink fans should be supplied via separate external voltage sources.

In the event of a fault in the heat sink fans, this provides a trouble-free supply of the control system.

Avoid overtemperature errors by adjusting the fan voltage

The voltage drop across the supply cable must be taken into account when supplying the fans with power.

The voltage at the FAN terminal must be 24V at full fan speed. KEB recommends a voltage source with adjustable output voltage

NOTICE

Use of unsuitable voltage sources!

Electric shock!

- ▶ Only voltage sources (PELV) according to VDE 0100 permitted.
- ▶ Ensure that the overvoltage category of the voltage supply is sufficient.
- ▶ Observe the tripping characteristics of the fuses when selecting the voltage source for the heat sink fan supply.

MAINS CONNECTION

Legend	
1	Internal use only
2	Fuse: F200, F201, F202 SIBA GmbH No. 179120.4
3	FAN: Connection +/- for external 24V voltage supply
Fuse(s) I / A	4 (Type gG)
Max. number of conductors	2
Supply voltage U_{FAN_dc} / V	24 -5/+15%
Rated input current I_{FAN_dc} / A	8
Peak current I_{FAN_Peak} / A	12
Tightening torque F_N / Nm	0,5...0,6
	F_N / lb inch
Connection cross section for IEC A / mm ²	0.2...4 (Flexible cable with wire-end ferrule) 1.5 max. (with 2 conductors)
for UL A / AWG	24...10 (UL: Flexible cable without wire-end ferrule) 14 max. (with 2 conductors)

Figure 37: External heat sink fan supply

5.4 Accessories

5.4.1 Filters and chokes

Voltage class	Drive controller size	HF filter	Mains choke 50 Hz / 4% U_k
400V	27	<ul style="list-style-type: none"> • 28E6T60-1150 • 28E4T60-1001 • 28E4T60-1051 • 30E4T60-1001 	<ul style="list-style-type: none"> • 27Z1B04-1000 • 27Z1B04-1007
	28	<ul style="list-style-type: none"> • 28E6T60-1150 • 28E4T60-1001 • 28E4T60-1051 • 30E4T60-1001 	<ul style="list-style-type: none"> • 28Z1B04-1000 • 28Z1B04-1007
	29	<ul style="list-style-type: none"> • 30E6T60-1150 • 30E4T60-1001 • 30E4T60-1051 	<ul style="list-style-type: none"> • 29Z1B04-1000 • 29Z1B04-1007
	30	<ul style="list-style-type: none"> • 30E6T60-1150 • 30E4T60-1001 • 30E4T60-1051 	<ul style="list-style-type: none"> • 30Z1B04-1000 • 30Z1B04-1007

Table 34: Filters and chokes

NOTICE

Overheating of the back mount filters!

- The use of sub-mounted filters for drive controllers with the material number xxF6xxx-xxx9 (fluid cooler water, built-in version, sub-mounted braking resistors) leads to overheating and is not permitted!

The specified filters and chokes are designed for rated operation.

5.4.2 Seal for IP54-ready devices

Name	Material number
Flat seal IP54	00F6T45-0001

Table 35: Seal for IP54-ready devices

5.4.3 Side-mounted braking resistors

Technical data and design about non-intrinsically safe braking resistors

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf

6 Operation of Liquid-Cooled Devices

6.1 Water-cooled devices

The use of water-cooled KEB COMBIVERT drive controller is offered, because there are process-caused coolants available with some applications. However, the following instructions must be observed.

6.1.1 Heat sink and operating pressure

Design system	Material	max. operating pressure	Connection
Aluminium heat sink with stainless steel tubes	Stainless steel 1.4404	10bar	=> „6.1.4 Connection of the cooling system“

NOTICE

Deformation of the heat sink!

- ▶ In order to avoid a deformation of the heat sink and the damages thereby, the indicated maximum operating pressure may not be exceeded briefly also by pressure peaks.
- ▶ Observe the Pressure Equipment Directive 2014/68/EU!

6.1.2 Materials in the cooling circuit

For the screw connections and also for the metallic articles in the cooling circuit which are in contact with the coolant (electrolyte) a material is to be selected, which forms a small voltage difference to the heat sink in order to avoid contact corrosion and/or pitting corrosion (electro-chemical voltage series, see the following table). The specific case of application must be checked by the customer in tuning of the complete cooling circuit and must be classified according to the used materials. With hoses and seals take care that halogen-free materials are used.

A liability for occurring damages by wrongly used materials and from this resulting corrosion cannot be taken over!

Material	formed ion	Standard potential	Material	formed ion	Standard potential
Lithium	Li+	-3.04 V	Nickel	Ni2+	-0.25 V
Potassium	K+	-2.93 V	Tin	Sn2+	-0.14 V
Calcium	Ca2+	-2.87 V	Lead	Pb3+	-0.13 V
Sodium	Na+	-2.71 V	Iron	Fe3+	-0.037 V
Magnesium	Mg2+	-2.38 V	Hydrogen	2H+	0.00 V
Titan	Ti2+	-1.75 V	Stainless steel (1.4404)	various	0.2...0.4 V
Aluminium	Al3+	-1.67 V	Copper	Cu2+	0.34 V
Manganese	Mn2+	-1.05 V	Carbon	C2+	0.74 V
Zinc	Zn2+	-0.76 V	Silver	Ag+	0.80 V
Chrome	Cr3+	-0.71 V	Platinum	Pt2+	1.20 V

continued on the next page

Material	formed ion	Standard potential	Material	formed ion	Standard potential
Iron	Fe2+	-0.44 V	Gold	Au3+	1.42 V
Cadmium	Cd2+	-0.40 V	Gold	Au+	1.69 V
Cobald	Co2+	-0.28 V			

Table 36: *Electrochemical series / standard potentials against hydrogen*

6.1.3 Requirements for the coolant

The requirements for the coolant depend on the ambient conditions as well as the used cooling system.

General requirements for the coolant:

Requirement	Description
Standards	Corrosion protection according to EN 12502-1...5 , water treatment and use of materials in cooling systems according to VGB S 455 P .
VGB Cooling water directive	The VGB cooling water directive (VGB S 455 P) contains instructions about common process technology of the cooling. Particularly the interactions between cooling water and components of the cooling system are described.
Abrasive substances	Abrasive substances as used in abrasive (quartz sand), clogging the cooling circuit.
Hard water	Cooling water may not cause scale deposits or loose excretions. The total hardness should be between 7...20 °dH, the carbon hardness at 3...10 °dH.
Soft water	Soft water (<7°dH) corrodes the material.
Frost protection	An appropriate antifreeze must be used for applications when the heat sink or the coolant is exposed temperatures below zero. Use only products of one manufacturer for a better compatibility with other additives. KEB recommends the antifreeze Antifrogen N from Clariant with a maximum volume content of 52 %.
Corrosion protection	Additives can be used as corrosion protection. In connection with frost protection the antifreeze must have a concentration of 20...25 Vol %, in order to avoid a change of the additives. Alternatively, an antifreeze / glycol with a concentration of 20% ... max. vol 52% can be used. If antifreeze is used, the water does not need to be provided with additional additives.

Table 37: *Requirements for the coolant*

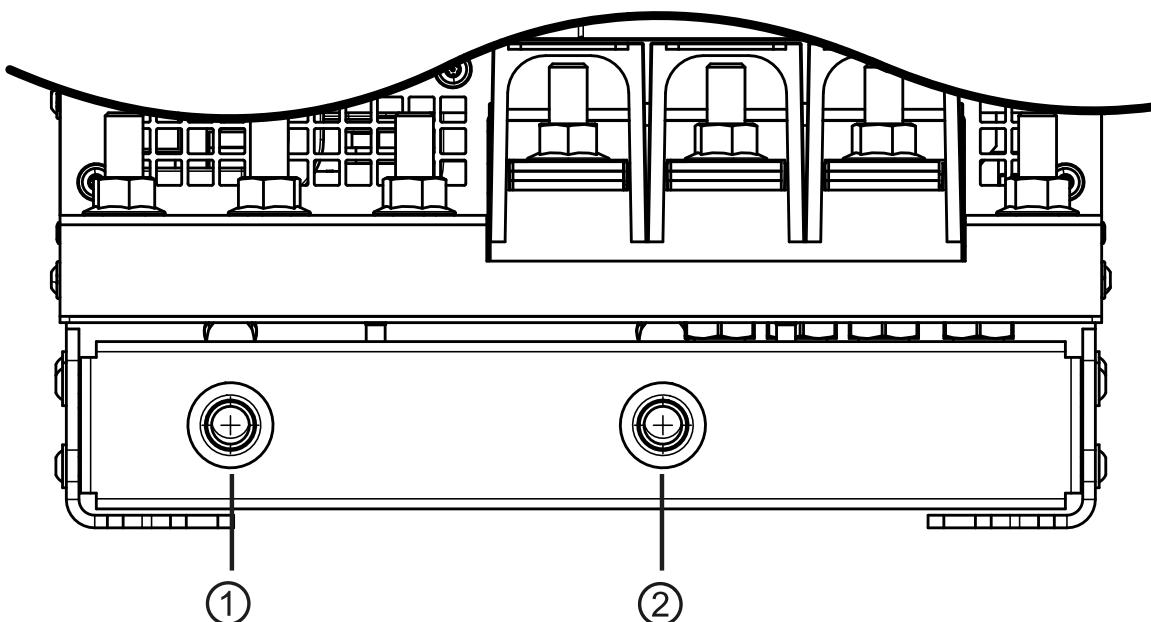
WATER-COOLED DEVICES

Special requirements for open and half-open cooling systems:

Requirement	Description
Impurities	Mechanical impurities in half-open cooling systems can be counteracted when appropriate water filters are used.
Salt concentration	The salt content can increase through evaporation at half-open systems. Thus the water is more corrosive. Adding of fresh water and removing of process water works against.
Algae and myxobacteria	Algae and myxobacteria can arise caused by increased water temperature and contact with atmospheric oxygen. The algae and myxobacteria clog the filters and obstruct the water-flow. Biocide containing additives can avoid this. Especially at longer OFF periods of the cooling circuit preventive maintenance is necessary.
Organic materials	The contamination with organic materials must be kept as small as possible, because separate slime can be caused by this.

Table 38: Special requirements for open and half-open cooling systems

Damages at the device which are caused by clogged, corroded heat sinks or other obvious operating errors, leads to the loss of the warranty claims.


6.1.4 Connection of the cooling system

The connection to the cooling system can occur as closed or open cooling circuit. The connection to a closed cycle cooling circuit is recommended, because the danger of contamination of coolant is very small. Preferably also a monitoring of the pH value of the coolant should be installed.

Pay attention to a corresponding conductor cross-section at required equipotential bonding in order to avoid electro-chemical procedures.

=> „6.1.2 Materials in the cooling circuit“

Other elements in the cooling circuit such as pumps, shut-off valves, ventilation etc. must be attached according to the cooling system and the local conditions.

No.	Connection	Type
1	Flow	Open pipe ends for the connection of the cooling system
2	Return flow	Pipe diameter outside: 15 mm

Figure 38: Open pipe ends for the connection of the cooling system

For the connection of the cooling system KEB recommends the use of functional nuts, e.g. from the manufacturer "Parker", type FMxxL71 (xx = pipe diameter).

In order to monitor the volume flow in the cooling system, KEB recommends the use of a volume flow monitor.

6.1.5 Coolant temperature and moisture condensation

The flow temperature should be selected depending on the volume flow so that the heat sink temperature is always 10 K below the overtemperature level (OH) during rated operation. This avoids sporadic shutdown.

The maximum heat sink temperature can be found in chapter => „3.3.1 Switching frequency and temperature“.

6.1.5.1 Condensation

A temperature difference between drive converter and ambient temperature can lead to condensation at high humidity.

Moisture condensation is dangerous for the drive converter. The drive converter can be destroyed through occurring short-circuits.

NOTICE

Destruction of the drive converter due to short circuit!

- Avoid any condensation.

6.1.5.2 Supply of temper coolant

- The supply of optimally tempered coolant is possible by using heaters in the cooling circuit to control the coolant temperature.
- The following dew point table shows the coolant inlet temperature depending on the ambient temperature and air humidity.

Air humidity / %	10	20	30	40	50	60	70	80	90
Ambient temperature / °C	-10	-26	-22	-19	-17	-15	-13	-11	-11
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6
0	-26	-19	-14	-11	-8	-6	-4	-3	-2
5	-23	-15	-11	-7	-5	-2	0	2	3
10	-19	-11	-7	-3	0	1	4	6	8
15	-18	-7	-3	1	4	7	9	11	13
20	-12	-4	1	5	9	12	14	16	18
25	-8	0	5	10	13	16	19	21	23
30	-6	3	10	14	18	21	24	26	28
35	-2	8	14	18	22	25	28	31	33
40	1	11	18	22	27	31	33	36	38
45	4	15	22	27	32	36	38	41	43
	Coolant inlet temperature / °C								

Table 39: Dew point table

Information on coolant management is given in the following document

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_en.pdf

NOTICE

Destruction of the heat sink at storage / transport of water-cooled devices!

Observe the following points when storing water-cooled devices:

- ▶ Completely empty the cooling circuit
- ▶ Blow out the cooling circuit with compressed air

NOTICE

Destruction of the drive converter due to condensation!

- ▶ Use only NC valves!

6.1.6 Permissible volume flow with water cooling

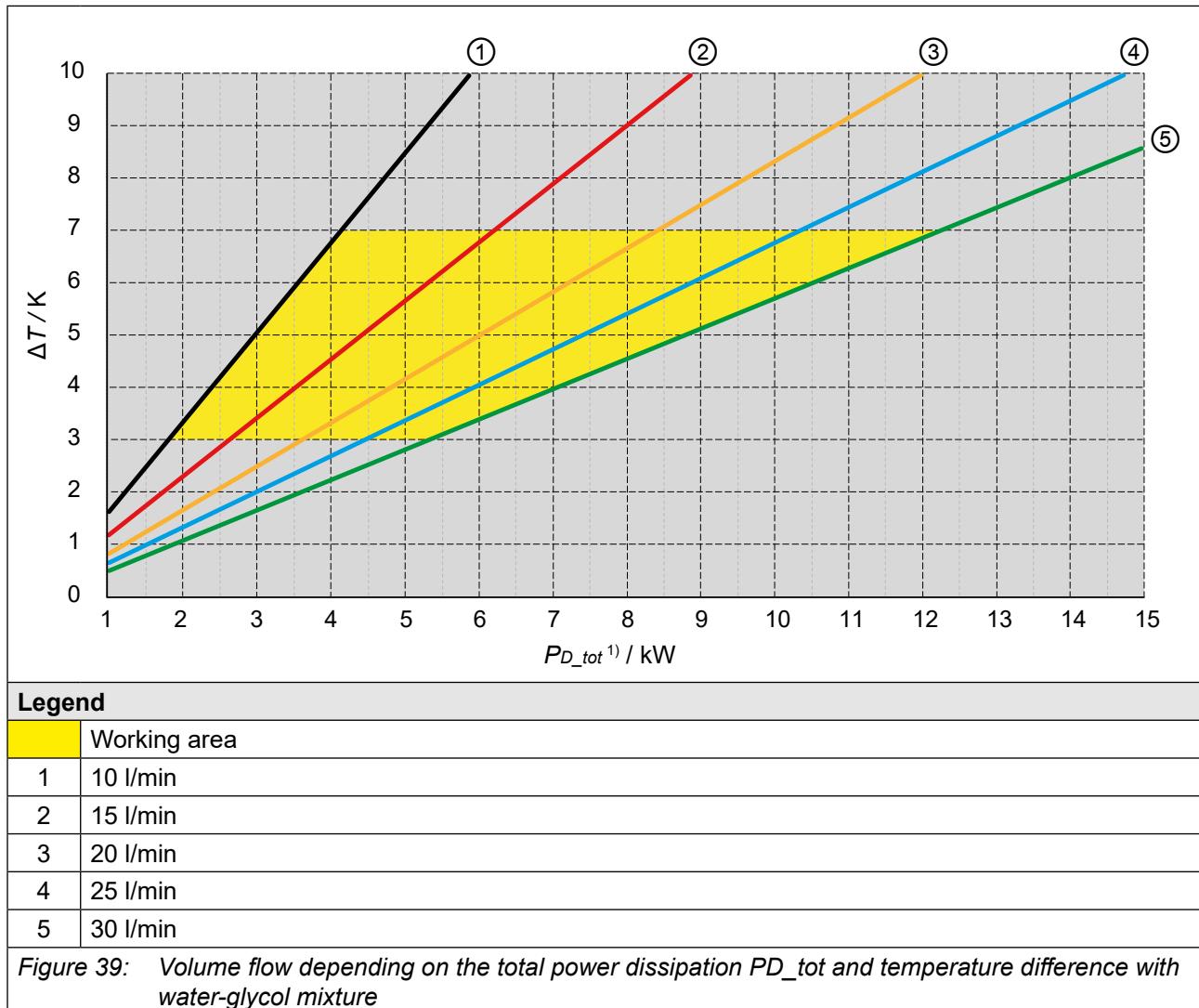
The volume flow of the following table must be observed.

Permissible volume flow		
Min. volume flow	Q_{min} / l/min	10
Max. volume flow	Q_{max} / l/min	33

Table 40: Permissible volume flow with water cooling

The volume flow depends on the total power dissipation.

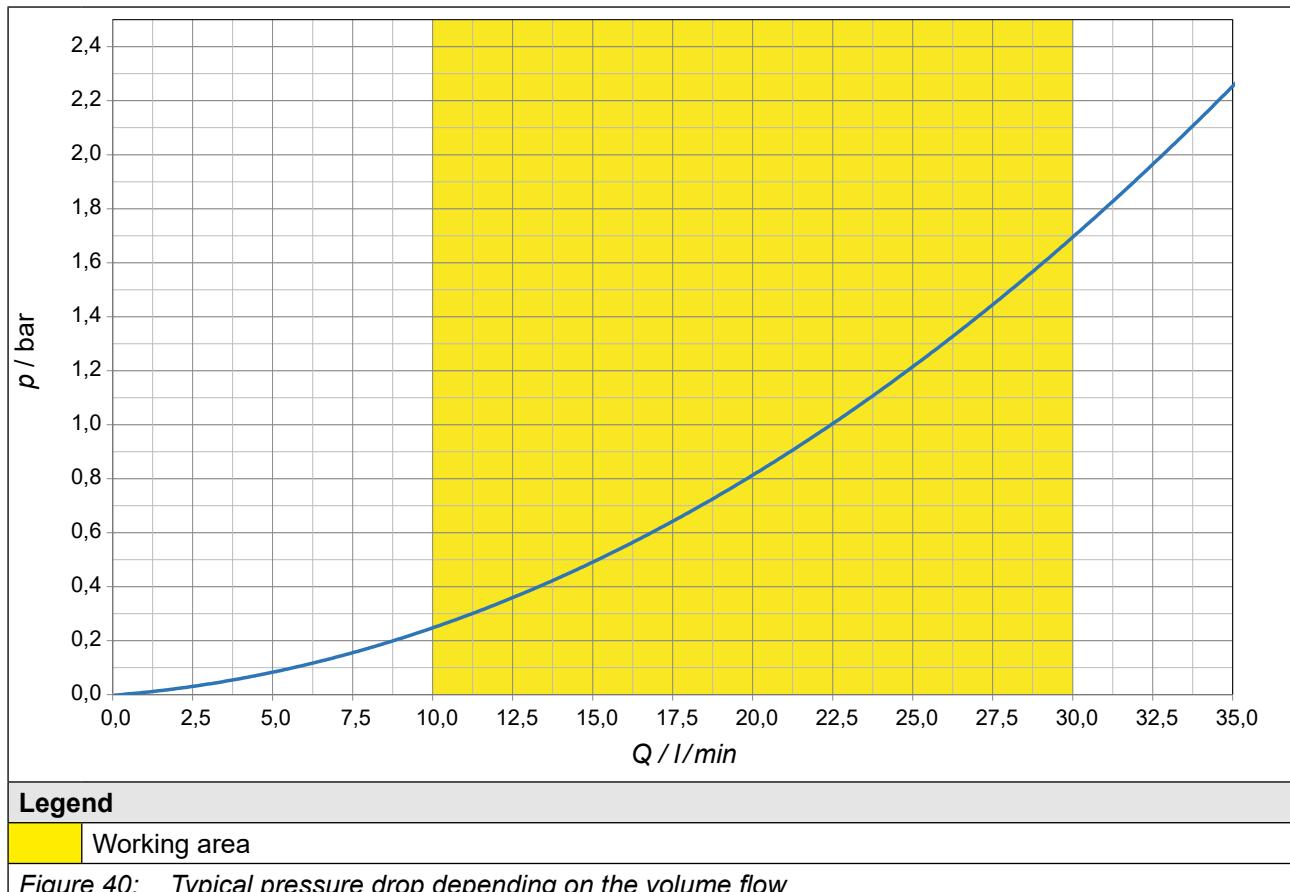
=> „6.1.7 Coolant heating“


NOTICE

Destruction of the heat sink due to erosion!

- ▶ The maximum permissible volume flow must not be exceeded.

6.1.7 Coolant heating


Volume flow depending on the total power dissipation and temperature difference between forward flow and return flow.

¹⁾ PD_{tot} can be higher than the power dissipation P_D at rated operation due to overload, higher switching frequency or sub-mounted braking resistors.

6.1.8 Typical pressure drop of the heat sink

- The curve characteristic shown below applies to a flow temperature of 25 °C and a glycol content of 52 %.
- If higher flow temperatures are used, the pressure drop in the system decreases.
- This also applies to cooling media such as water or another glycol mixture
- A glycol mixture from Clariant in a ratio of 52 % or 33 % is recommended.

7 Approvals and certifications

7.1 CE marking

The drive controller marked with a CE logo comply with the requirements specified by European Union directives. The CE Declaration of Conformity is available on the Internet at www.keb-automation.com/de/suche .

For further information regarding the CE declarations of conformity
=> *7.3 Further informations and documentation*

7.2 UL certification

	Acceptance according to UL is marked at KEB drive controllers with the adjacent logo on the nameplate.	UL file number E167544
---	--	---------------------------

To be conform according to UL for use on the North American and Canadian Market the following additionally instructions must be observed (original text of the UL-File):

- All models:
Maximum Surrounding Air Temperature: 45°C
- Use 75°C Copper Conductors Only
- All Models: „Suitable For Use On A Circuit Capable Of Delivering Not More Than 18000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.”

All Models: „Suitable For Use On A Circuit Capable Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 6xy32.xxx, or by Bussmann, Type 170M3x-xy or by Littelfuse, Type L70QSxxx.x, see instruction manual for Branch Circuit Protection details.”

When DC supplied:

„Suitable For Use On A Circuit Capable Of Delivering Not More Than 85000 Amperes, 680 Volts DC Maximum when protected by Semiconductor Fuses as Specified in the Manual“.

CSA: For Canada, this marking shall be provided on the device or on a separate label shipped with the device.

Details of the prescribed Branch Circuit Protection as specified in the below section ‘Branch Circuit Protection’ of this Report need to be marked in the instruction manual.

- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada:

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I.

LA PROTECTION INTÉGRÉE CONTRE LES COURTS CIRCUITS N’ASSURE PAS LA PROTECTION DE LA DÉRIVATION. LA PROTECTION DE LA DÉRIVATION DOIT ÊTRE EXÉCUTÉE CONFORMÉMENT AU CODE CANADIEN DE L’ÉLECTRICITÉ, PREMIÈRE PARTIE.

- For Use in a Pollution Degree 2 environment.
For installations according to Canadian National Standard C22.2 No. 274-13:
For use in Pollution Degree 2 and Overvoltage Category III environments only.
- Control Circuit Overcurrent Protection Required.
The required external control voltage supply shall be marked to indicate a 24Vdc supply voltage.

APPROVALS AND CERTIFICATIONS

- CAUTION - Risk of Electric Shock, discharge time of DC capacitors to a level below 50V is 5 minutes" or equivalent.
AVERTISSEMENT : RISQUE DU CHOC ÉLECTRIQUE. UNE TENSION DANGEREUSE PEUT ÊTRE PRÉSENTÉE JUSQU'À 5 MINUTES APRÈS AVOIR COUPÉ L'ALIMENTATION.
- WARNING – The opening of the branch circuit protective device may be an indication that a fault current has been interrupted. To reduce the risk of fire or electrical shock, current-carrying parts and other components of the controller should be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced.

CSA: For Canada:

ATTENTION - LE DÉCLENCHEMENT DU DISPOSITIF DE PROTECTION DU CIRCUIT DE DÉRIVATION PEUT ÊTRE DÛ À UNE COUPURE QUI RÉSULTE D'UN COURANT DE DÉFAUT. POUR LIMITER LE RISQUE D'INCENDIE OU DE CHOC ÉLECTRIQUE, EXAMINER LES PIÈCES PORTEUSES DE COURANT ET LES AUTRES ÉLÉMENTS DU CONTRÔLEUR ET LES REMPLACER S'ILS SONT ENDOMMAGÉS. EN CAS DE GRILLAGE DE L'ÉLÉMENT TRAVERSÉ PAR LE COURANT DANS UN RELAIS DE SURCHARGE, LE RELAIS TOUT ENTIER DOIT ÊTRE REMPLACÉ.

- For liquid cooled devices:
 - Maximum operating pressure: 10 bar (145 psi)
 - Liquid inlet temperature range: +5...+55°C
 - Min liquid flow rate: 10 l/min
 - Coolant type: Water or a mixture of water with a maximum of 52% monoethylene glycol
- Only for use in non-corner grounded type WYE source not exceeding 277 V phase to ground.
- External break resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time, (60 sec off-time)

Sub-mounted brake resistor ratings and duty cycle:

- Duty cycle 0.52%
- Max. 0.62 sec on-time / 119.38 sec off-time
- For the DC bus terminals and the mains/motor terminals, the installation instructions or user maintenance manual shall identify any accessible part at voltages greater than DVC A, and shall describe insulation and separation provisions required for protection.

- Field wiring terminals are marked to show a nominal value of tightening torque in pound-inches (Nm) to be applied to the clamping screws as shown below:

All power terminals:

310 lb-in (35 Nm)

External Fan supply:

4.5-5.3 lb-in (0.5-0.6 Nm)

Control supply:

Screwless terminals (spring-action type)

Grounding terminal:

310 lb-in (35 Nm)

7.3 Further informations and documentation

You find supplementary manuals and instructions for the download under
www.keb-automation.com/search

General instructions

- EMC and safety instructions
- Manuals for additional control boards, safety modules, fieldbus modules, etc.

Instruction and information for construction and development

- Input fuses in accordance with UL
- Programming manual for control and power unit
- Motor configurator to select the appropriate drive controller and to create downloads for parameterizing the drive controller

Approvals and approbations

- Declaration of conformity CE
- TÜV certificate
- FS certification

Other markings and approvals not listed here are identified by a corresponding logo on the rating plate or device, if applicable. The corresponding certificates are available on our website.

Others

- COMBIVIS, the software for comfortable parameterization of drive controllers via PC (available per download)
- EPLAN drawings

8 Revision history

Version	Date	Description
00	2017-08	Creation of a prototype.
00	2018-05	Creation of the pre-series manual.
01	2019-01	Changes of technical data. Figures of the overload characteristics adapted.
02	2020-08	Changes of technical data. Change of overload characteristics, editorial changes.
03	2021-08	Drawings, technical data updated.
04	2022-03	Inclusion of the UL certificate, drawings adapted.
05	2023-03	Filters adapted. Creation of the series version
06	2024-12	Description for DC-Ready devices added. Glossary, standards, type code updated. Editorial changes.
07	2025-03	Editorial changes, DC-Ready connection corrected.
08	2025-08	Recording of device size 30 with 4 kHz.
09	2025-11	Editorial changes, description of conducted interference updated.
10	2026-02	UL text expanded, Editorial changes.

Glossary

0V	Earth-potential-free common point	Encoder emulation	Software-generated encoder output
1ph	1-phase mains	End customer	The end customer is the user of the customer product
3ph	3-phase mains	Endat	Bidirectional encoder interface of the company Heidenhain
AC	AC current or voltage	EtherCAT	Real-time Ethernet bus system of the company Beckhoff
AFE	From 07/2019 AIC replaces the previous name AFE	Ethernet	Real-time bus system - defines protocols, plugs, types of cables
AFE filter	From 07/2019 AIC filter replaces the previous name AFE filter	FE	Functional earth
AIC	Active Infeed Converter	FSoE	Functional Safety over Ethernet
AIC filter	Filter for Active Infeed Converter	FU	Drive controller
Application	The application is the intended use of the KEB product	GND	Reference potential, ground
ASCL	Asynchronous sensorless closed loop	GTR7	Braking transistor
Auto motor ident.	Automatically motor identification; calibration of resistance and inductance	HF filter	KEB specific term for an EMC filter (for description see EMC filter).
AWG	American wire gauge	Hiperface	Bidirectional encoder interface of the company Sick-Stegmann
B2B	Business-to-business	HMI	Human machine interface (touch screen)
BiSS	Open source real-time interface for sensors and actuators (DIN 5008)	HSP5	Fast, serial protocol
CAN	Fieldbus system	HTL	Incremental signal with an output voltage (up to 30V) -> TTL
c.d.f.	Cyclic duration factor	IEC	IEC xxxx stands for an international standard of the International Electrotechnical Commission
CDM	Complete drive module including auxiliary equipment (control cabinet)	IPxx	Protection class (xx for class)
COMBIVERT	KEB drive controller	KEB product	The KEB product is subject of this manual
COMBIVIS	KEB start-up and parameterizing software	KTY	Silicium temperature sensor (polarized)
Customer	The customer has purchased a KEB product from KEB and integrates the KEB product into his product (customer product) or resells the KEB product (dealer)	Manufacturer	The manufacturer is KEB, unless otherwise specified (e.g. as manufacturer of machines, engines, vehicles or adhesives)
DC	DC current or voltage	MCM	American unit for large wire cross sections
DI	Demineralized water, also referred to as deionized (DI) water	Modulation	Means in drive technology that the power semiconductors are controlled
DIN	German Institut for standardization	MTTF	Mean service life to failure
DS 402	CiA DS 402 - CAN device profile for drives	NHN	Standard elevation zero; based on the specified height definition in Germany (DHHN2016). The international data generally deviate from this by only a few cm to dm, so that the specified value can be applied to the regionally applicable definition.
ELV	Extra-low voltage	OC	Overcurrent
EMC filter	EMC filters are used to suppress conducted interferences in both directions between the drive controller and the mains	OH	Overheat
Emergency stop	Shutdown of a drive in emergency case (not de-energized)	OL	Overload
Emergency switching off	Switching off the voltage supply in emergency case		
EMS	Energy Management System		
EN	European standard		

OSSD	Output signal switching device; - an output signal that is checked in regular intervals on its shutdown. (safety technology)
PDS	Power drive system incl. motor and measuring probe
PE	Protective earth
PELV	Protective Extra Low Voltage
PFD	Term used in the safety technology (EN 61508-1...7) for the size of error probability
PFH	Term used in the safety technology (EN 61508-1...7) for the size of error probability per hour
PLC	Programmable logic controller
Pt100	Temperature sensor with $R_0=100\Omega$
Pt1000	Temperature sensor with $R_0=1000\Omega$
PTC	PTC-resistor for temperature detection
PWM	Pulse width modulation
RJ45	Modular connector with 8 lines
SCL	Synchronous sensorless closed loop
SELV	Safe extra-low voltage, unearthing
SIL	The safety integrity level is a measure for quantifying the risk reduction. Term used in the safety technology (EN 61508 -1...7)
SS1	Safety function „Safe stop 1“ in accordance with IEC 61800-5-2
SSI	Synchronous serial interface for encoder
STO	Safety function „Safe Torque Off“ in accordance with IEC 61800-5-2
TTL	Logic with 5 V operating voltage
USB	Universal serial bus
VARAN	Real-time Ethernet bus system

List of Figures

Figure 1:	Nameplate (exemplary).....	21
Figure 2:	Configurable options	22
Figure 3:	Switch-off time t depending on the overload I/I_{IN} at OC level 150 %	30
Figure 4:	Switch-off time t depending on the overload I/I_{IN} at OC level 180 %	31
Figure 5:	Typical overload characteristics in the lower output frequencies (OL2) example device size 29	32
Figure 6:	Block diagram of the energy flow.....	44
Figure 7:	Fan.....	47
Figure 8:	Exemplary switching behaviour of the heat sink fans	48
Figure 9:	Dimensions built-in version air cooler	49
Figure 10:	Dimensions built-in version fluid cooler (water)	50
Figure 11:	Dimensions push-through version air cooler IP20, IP54-ready	51
Figure 12:	Dimensions push-through version fluid cooler (water) IP20, IP54-ready.....	52
Figure 13:	Example of an F6 in housing 8 with M10 ring bolts	53
Figure 14:	Example of an F6 housing 7 with transport brackets	53
Figure 15:	Mounting distances	55
Figure 16:	Installation of IP54-ready devices	57
Figure 17:	Control cabinet ventilation.....	58
Figure 18:	Airflow of the drive controller.....	58
Figure 19:	F6 housing 8 top view	59
Figure 20:	F6 housing 8 front view.....	60
Figure 21:	F6 housing 8 rear view with control board APPLICATION	61
Figure 22:	Input circuit.....	62
Figure 23:	Terminal block X1A for 400 V devices.....	63
Figure 24:	Connection for protective earth.....	64
Figure 25:	Connection of the mains supply 3-phase.....	65
Figure 26:	Terminal block X1A DC connection.....	66
Figure 27:	Connection at DC voltage supply.....	67
Figure 28:	Wiring of the motor.....	68
Figure 29:	Terminal block X1A motor connection	69
Figure 30:	Symmetrical motor line	70
Figure 31:	Terminal block X1C for control board APPLICATION and COMPACT	72
Figure 32:	Terminal block X1C for control board PRO	72
Figure 33:	Connection of the brake control	73
Figure 34:	Connection of a KTY sensor	73
Figure 35:	Terminal block X1A connection braking resistor	75
Figure 36:	DC-bus connection	78
Figure 37:	External heat sink fan supply	80
Figure 38:	Open pipe ends for the connection of the cooling system	85
Figure 39:	Volume flow depending on the total power dissipation PD_{tot} and temperature difference with water-glycol mixture.....	88
Figure 40:	Typical pressure drop depending on the volume flow.....	89

List of Tables

Table 1:	Part code.....	20
Table 2:	Climatic environmental conditions	23
Table 3:	Mechanical environmental conditions	24
Table 4:	Further environmental operating conditions.....	24
Table 5:	Device classification.....	24
Table 6:	Electromagnetic compatibility	25
Table 7:	Overview of the 400 V devices	27
Table 8:	Input voltages and frequencies of the 400V devices	28
Table 9:	DC link voltage for 400V devices.....	28
Table 10:	Output voltages and frequencies of the 400V devices	28
Table 11:	Example of the calculation of the possible motor voltage:.....	28
Table 12:	Input and output currents / overload of the 400 V devices	29
Table 13:	Frequency-dependent maximum current for device size 27 (air cooler).....	33
Table 14:	Frequency-dependent maximum current for device size 28 (air cooler).....	33
Table 15:	Frequency-dependent maximum current for device size 29 (air cooler).....	34
Table 16:	Frequency-dependent maximum current for device size 30 (OC level: 150%) (air cooler).....	34
Table 17:	Frequency-dependent maximum current for device size 30 (OC level: 180%) (air cooler).....	35
Table 18:	Frequency-dependent maximum current for device size 27 (fluid cooler water)	36
Table 19:	Frequency-dependent maximum current for device size 28 (fluid cooler water)	36
Table 20:	Frequency-dependent maximum current for device size 29 (fluid cooler water)	37
Table 21:	Frequency-dependent maximum current for device size 30 (OC level: 180%) (fluid cooler water)	37
Table 22:	Frequency-dependent maximum current for device size 30 (OC level: 150%) (fluid cooler water)	38
Table 23:	Overview of rectifier data for 400 V devices	39
Table 24:	Power dissipation of the 400 V devices	39
Table 25:	Fusings for 400V / 480V devices	40
Table 26:	DC Fusing of the 400V / 480V devices	41
Table 27:	Switching frequencies and temperatures for air coolers	42
Table 28:	Switching frequency and temperature for fluid cooler (water).....	43
Table 29:	DC link / braking transistor function of the 400V devices	45
Table 30:	Sub-mounted braking resistors	46
Table 31:	Switching points of the fans	48
Table 32:	Mounting instructions for built-in version.....	54
Table 33:	Mounting instructions for push-through version	54
Table 34:	Filters and chokes	81
Table 35:	Seal for IP54-ready devices.....	81
Table 36:	Electrochemical series / standard potentials against hydrogen.....	83
Table 37:	Requirements for the coolant.....	83
Table 38:	Special requirements for open and half-open cooling systems	84
Table 39:	Dew point table	86
Table 40:	Permissible volume flow with water cooling.....	87

NOTES

MORE KEB PARTNERS WORLDWIDE:

www.keb-automation.com/contact

Automation with Drive

www.keb-automation.com

KEB Automation KG Suedstrasse 38 D-32683 Barneburg Tel. +49 5263 401-0 E-Mail: info@keb.de